[1]
J. Wang, I. Besselink, and H. Nijmeijer, Online prediction of battery electric vehicle energy consumption,, World Electr. Veh. J., vol. 8, no. 1, p.213–224, 2016,.
DOI: 10.3390/wevj8010213
Google Scholar
[2]
A. Zenati, P. Desprez, H. Razik, and S. Rael, A methodology to assess the state of health of lithium-ion batteries based on the battery's parameters and a fuzzy logic system,, 2012 IEEE Int. Electr. Veh. Conf. IEVC 2012, 2012,.
DOI: 10.1109/ievc.2012.6183268
Google Scholar
[3]
Badan Pengkajian dan Penerapan Teknologi, Perekayasaan Teknologi Baterai untuk Mobil Listrik,, p.0–55, 2016, [Online]. Available: http://b2tke.bppt.go.id/images/Documents/PPID/SetiapSaat/N - Hasil Kegiatan/5864,001.001 - Layanan Teknologi Untuk Mobil Listrik.pdf.
DOI: 10.14203/icdi.v4i.81
Google Scholar
[4]
S. Yarlagadda, T.T. Hartley, and I. Husain, A Battery Management System using an active charge equalization technique based on a DC/DC converter topology,, IEEE Energy Convers. Congr. Expo. Energy Convers. Innov. a Clean Energy Futur. ECCE 2011, Proc., vol. 49, no. 6, p.1188–1195, 2011,.
DOI: 10.1109/ECCE.2011.6063911
Google Scholar
[5]
P. Ananto, F. Syabani, W.D. Indra, O. Wahyunggoro, and A.I. Cahyadi, The state of health of Li-Po batteries based on the battery's parameters and a fuzzy logic system,, Proc. 2013 Jt. Int. Conf. Rural Inf. Commun. Technol. Electr. Technol. rICT ICEV-T 2013, 2013,.
DOI: 10.1109/rICT-ICeVT.2013.6741508
Google Scholar
[6]
M.-F. Ng, J. Zhao, Q. Yan, G.J. Conduit, and Z.W. Seh, Predicting the state of charge and health of batteries using data-driven machine learning,, Nat. Mach. Intell., vol. 2, no. 3, p.161–170, 2020,.
DOI: 10.1038/s42256-020-0156-7
Google Scholar
[7]
D. Wang, F. Yang, L. Gan, and Y. Li, Fuzzy prediction of power lithium ion battery State of Function based on the fuzzy c-means clustering algorithm,, World Electr. Veh. J., vol. 10, no. 1, 2019,.
DOI: 10.3390/wevj10010001
Google Scholar
[8]
Y.F. Hernández-Julio, M.J. Prieto-Guevara, W. Nieto-Bernal, I. Meriño-Fuentes, and A. Guerrero-Avendaño, Framework for the development of data-driven mamdani-type fuzzy clinical decision support systems,, Diagnostics, vol. 9, no. 2, 2019,.
DOI: 10.3390/diagnostics9020052
Google Scholar
[9]
D.K. Yadav, Modeling an intelligent controller for anti-lock braking system,, Int. J. Tech. Res. Appl., vol. 3, no. 4, p.122–126, (2015).
Google Scholar
[10]
T. Chai and R.R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature,, Geosci. Model Dev., vol. 7, no. 3, p.1247–1250, 2014,.
DOI: 10.5194/gmd-7-1247-2014
Google Scholar
[11]
S.S. Han and W.Z. Chen, The algorithm of dynamic battery SOC based on Mamdani fuzzy reasoning,, Proc. - 5th Int. Conf. Fuzzy Syst. Knowl. Discov. FSKD 2008, vol. 1, p.439–443, 2008,.
DOI: 10.1109/FSKD.2008.166
Google Scholar
[12]
S. Sun, J. Zhang, J. Bi, Y. Wang, and M.H.Y. Moghaddam, A Machine Learning Method for Predicting Driving Range of Battery Electric Vehicles,, J. Adv. Transp., vol. 2019, 2019,.
DOI: 10.1155/2019/4109148
Google Scholar