[1]
Chenghuan Liu, Du Q. Huynh, Senior Member, IEEE, Yuchao Sun, Mark Reynolds, Member, IEEE, and Steve Atkinson A Vision-Based Pipeline for Vehicle Counting, Speed Estimation, and Classification,.
DOI: 10.1109/tits.2020.3004066
Google Scholar
[2]
S. Sanjana1, S. Sanjana1, V.R. Shriya1, Gururaj Vaishnavi1, K. Ashwini1 A review on various methodologies used for vehicle classification, helmet detection and number plate recognition,.
Google Scholar
[3]
M. Hassaballah, Member, IEEE, Mourad A. Kenk, Khan Muhammad, Member, IEEE, and Shervin Minaee Vehicle Detection and Tracking in Adverse Weather Using a Deep Learning Framework,.
DOI: 10.1109/tits.2020.3014013
Google Scholar
[4]
Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, Fast R-CNN, (Submitted on 4 Jun 2015 (v1), last revised 6 Jan 2016 (this version, v3)).
Google Scholar
[5]
Joseph Redmon, Ali Farhadi, YOLO9000: Better, Faster, Stronger,, University of Washington, Allen Institute of AI.
Google Scholar
[6]
Joseph Redmon, Ali Farhadi, YOLOv3: An Incremental Improvement,, University of Washington, Allen Institute of AI.
Google Scholar
[7]
Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng – Yang Fu, Alexander C. Berg, SSD: Single Shot MultiBox Detector,.
DOI: 10.1007/978-3-319-46448-0_2
Google Scholar
[8]
A. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz, Robust real-time unusual event detection using multiple fixed location monitors,, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 3, p.555–560.
DOI: 10.1109/tpami.2007.70825
Google Scholar
[9]
S. Santra, S. Roy, P. Sardar and A. Deyasi, Real-Time Vehicle Detection from Captured Images,, 2019 International Conference on Opto-Electronics and Applied Optics (Optronix), Kolkata, India, 2019, pp.1-4,.
DOI: 10.1109/optronix.2019.8862323
Google Scholar
[10]
P.M. Daigavane, P.R. Bajaj. Real Time Vehicle detection and Counting Method for Unsupervised Traffic Video on Highways,, IJCSNS International Journal of Computer Science and Network Security, vol.10, (2010).
Google Scholar
[11]
B. F. Momin and T. M. Mujawar, Vehicle detection and attribute-based search of vehicles in video surveillance system,, IEEE Int.Conf. Circuit, Power Comput. Technol. ICCPCT 2015, p.1–4, 2015,.
DOI: 10.1109/iccpct.2015.7159405
Google Scholar
[12]
G. Rocha Filho et al., Enhancing intelligence in traffic management systems to aid in vehicle traffic congestion problems in smart cities,, Ad Hoc Networks, vol. 107, p.102265, 2020.
DOI: 10.1016/j.adhoc.2020.102265
Google Scholar
[13]
O. Sharma, Deep Challenges Associated with Deep Learning,, 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 2019, pp.72-75,.
DOI: 10.1109/COMITCon.2019.8862453
Google Scholar
[14]
Liyuan Li, Weimin Huang, Irene Yu-Hua Gu and Qi Tian, Statistical modeling of complex backgrounds for foreground object detection,, in IEEE Transactions on Image Processing, vol. 13, no. 11, pp.1459-1472, Nov. 2004,.
DOI: 10.1109/tip.2004.836169
Google Scholar
[15]
R. Girshick, Fast R-CNN,, 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 2015, pp.1440-1448,.
DOI: 10.1109/iccv.2015.169
Google Scholar
[16]
Y. Bar-Shalom and T.E. Fortmann, Tracking and Data Association. London, U.K.: Academic, (1988).
Google Scholar
[17]
S. Ren, K. He, R. Girshick and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,, in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no.6, pp.1137-1149, 1 June 2017,.
DOI: 10.1109/tpami.2016.2577031
Google Scholar
[18]
J. Redmon, S. Divvala, R. Girshick and A. Farhadi, You Only Look Once: Unified, Real-Time Object Detection,, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp.779-788,.
DOI: 10.1109/cvpr.2016.91
Google Scholar
[19]
S. S. Blackman, Multiple hypothesis tracking for multiple target tracking,, IEEE Aerosp. Electron. Syst. Mag., vol. 19, no. 1, p.5–18, Jan. (2004).
DOI: 10.1109/maes.2004.1263228
Google Scholar
[20]
C. Huang, B. Wu, and R. Nevatia, Robust object tracking by hierarchical association of detection responses,, in Proc. ECCV, 2008, p.788–801.
DOI: 10.1007/978-3-540-88688-4_58
Google Scholar