[1]
Jadhav, K.P.; Thorat, S.A. Towards Designing Conversational Agent Systems. In Advances in Intelligent Systems and Computing; Springer: Berlin, Germany, (2020).
Google Scholar
[2]
Battineni, G.; di Canio, M.; Chintalapudi, N.; Amenta, F.; Nittari, G. Development of physical training smartphone application to maintain fitness levels in seafarers. Int. Marit. Health 2019, 70, 180– 186. [CrossRef] [PubMed].
DOI: 10.5603/imh.2019.0028
Google Scholar
[3]
Yan, R. Chitty-chitty-chat bot,: Deep learning for conversational AI. In Proceedings of the Twenty- Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), Stockholm, Sweden, 13–19 July (2018).
DOI: 10.24963/ijcai.2018/778
Google Scholar
[4]
Luo, X.; Tong, S.; Fang, Z.; Qu, Z. Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Mark. Sci. 2019. [CrossRef].
DOI: 10.1287/mksc.2019.1192
Google Scholar
[5]
Chung, K.; Park, R.C. Chatbot-based healthcare service with a knowledge base for cloud computing. Cluster Compute. 2019, 22, 1925–1937. [CrossRef].
DOI: 10.1007/s10586-018-2334-5
Google Scholar
[6]
Sohrabi, C.; Alsafi, Z.; O'Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [CrossRef] [PubMed].
DOI: 10.1016/j.ijsu.2020.02.034
Google Scholar
[7]
WHO Health Alert Brings COVID-19 Facts to Billions Via WhatsApp.Available online: https://www.who.int/news-room/feature- stories/detail/who-health-alert-brings-covid-19-facts- to-billions-via-whatsapp (accessed on 13 April 2020).
Google Scholar
[8]
How Governments Worldwide are Using Messaging Apps in Times of COVID-19'. Available online: https://www.messengerpeople.com/governments-worldwide-covid-19/#Germany (accessed on 6 May 2020).
Google Scholar
[9]
SAJIDA Foundation and Renata Ltd. Team up to Tackle the COVID-19 Pandemic|Dhaka Tribune'. Available online: https://www.dhakatribune.com/feature/2020/04/06/saj ida-foundation-and-renata-ltd-team-up-totackle-the- covid-19-pandemic (accessed on 6 May 2020).
Google Scholar
[10]
Aarogya Setu Mobile App|MyGov.in. Available online: https://www.mygov.in/aarogya-setu-app (accessed on 6 May 2020).
DOI: 10.37506/ijfmt.v14i4.12598
Google Scholar
[11]
Sojasingarayar, A. Seq2Seq AI Chatbot with Attention Mechanism. Master's Thesis, Department of Artifificial Intelligence, IA School/University-GEMA Group, Boulogne-Billancourt, France, (2020).
Google Scholar
[12]
Shum, H.y.; He, X.d.; Li, D. From Eliza to XiaoIce: Challenges and opportunities with social chatbots. Front. Inf. Technol. Electron. Eng. 2018, 19, 10–26. [CrossRef].
DOI: 10.1631/fitee.1700826
Google Scholar
[13]
Yan, R.; Song, Y.; Wu, H. Learning to Respond with Deep Neural Networks for Retrieval-Based Human-Computer Conversation System. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval-SIGIR '16, Pisa, Italy, 17– 21July 2016; ACM Press: Pisa, Italy, 2016; p.55–64. [CrossRef].
DOI: 10.1145/2911451.2911542
Google Scholar
[14]
Lu, Z.; Li, H. A Deep Architecture for Matching Short Texts. Adv. Neural Inf. Process. Syst. 2013, 26, 1367–1375.
Google Scholar
[15]
Shang, L.; Lu, Z.; Li, H. Neural Responding Machine for Short-Text Conversation. arXiv 2015, arXiv:1503.02364.
Google Scholar
[16]
Sordoni, A.; Galley, M.; Auli, M.; Brockett, C.; Ji, Y.; Mitchell, M.; Nie, J.Y.; Gao, J.; Dolan, B. A Neural Network Approach to Context-Sensitive Generation of Conversational Responses. arXiv 2015, arXiv:1506.06714.
DOI: 10.3115/v1/n15-1020
Google Scholar
[17]
Vinyals, O.; Le, Q. A Neural Conversational Model. arXiv 2015, arXiv:1506.05869.
Google Scholar
[18]
Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. Adv. Neural Inf. Process. Syst. 2014, 2, 3104–3112.
Google Scholar
[19]
Jurafsky, D.; Martin, J. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition; Dorling Kindersley Pvt, Limited: London, UK, 2020; Volume 2.
Google Scholar
[20]
Strigér, A. End-to-End Trainable Chatbot for Restaurant Recommendations. Master's Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, (2017).
Google Scholar
[21]
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762.
Google Scholar
[22]
Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv 2019, arXiv:1810.04805.
Google Scholar
[23]
Kitaev, N.; Kaiser, L.; Levskaya, A. Reformer: The Effificient Transformer. arXiv 2020, arXiv:2001.04451.
Google Scholar
[24]
Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q.V.; Salakhutdinov, R. Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context. arXiv 2019, arXiv:1901.02860.
DOI: 10.18653/v1/p19-1285
Google Scholar
[25]
Adiwardana, D.; Luong, M.T.; So, D.R.; Hall, J.; Fiedel, N.; Thoppilan, R.; Yang, Z.; Kulshreshtha, A.; Nemade, G.; Lu, Y.; et al. Towards a Human-like Open-Domain Chatbot. arXiv 2020, arXiv:2001.09977.
Google Scholar
[26]
Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2016, arXiv:1409.0473.
Google Scholar
[27]
So, D.R.; Liang, C.; Le, Q.V. The Evolved Transformer. arXiv 2019, arXiv:1901.11117.
Google Scholar
[28]
Dauphin, Y.N.; Fan, A.; Auli, M.; Grangier, D. Language Modeling with Gated Convolutional Networks. arXiv 2017, arXiv: cs.CL/1612.08083.
Google Scholar
[29]
Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for Activation Functions. arXiv 2017, arXiv: cs.NE/1710.05941D. Natural language processing technologies in radiology research and clinical applications. Radiographics 2016, 36, 176–191. [CrossRef] [PubMed].
Google Scholar
[30]
Zeng, Z.; Deng, Y.; Li, X.; Naumann, T.; Luo, Y. Natural Language Processing for EHR-Based Computational Phenotyping. IEEE/ACM Trans. Comput. Biol. Bioinf. 2019, 16, 139–153. [CrossRef] [PubMed].
DOI: 10.1109/tcbb.2018.2849968
Google Scholar
[31]
Kreimeyer, K.; Foster, M.; Pandey, A.; Arya, N.; Halford, G.; Jones, S.F.; Forshee, R.; Walderhaug, M.; Botsis, T. Natural language processing systems for capturing and standardizing unstructured clinical information: A systematic review. J. Biomed. Inform. 2017, 73, 14–29. [CrossRef] [PubMed].
DOI: 10.1016/j.jbi.2017.07.012
Google Scholar
[32]
Caldarini, G.; Jaf, S.; McGarry, K. A Literature Survey of Recent Advances in Chatbots. Information 2022, 13, 41. https://doi.org/10.3390/info13010041.
DOI: 10.3390/info13010041
Google Scholar
[33]
Battineni, G.; Chintalapudi, N.; Amenta, F. AI Chatbot Design during an Epidemic like the Novel Coronavirus. Healthcare 2020, 8, 154. https://doi.org/10.3390/healthcare8020154.
DOI: 10.3390/healthcare8020154
Google Scholar
[34]
Abbott Po Shun Chen, Chai Wu Liu. Crafting ASR and Conversational Models for an Agriculture Chatbot, , 2021 The 4th International Conference on Computational Intelligence and Intelligent Systems, 2021 https://dl.acm.org/doi/abs/10.1145/3507623.3507634.
DOI: 10.1145/3507623.3507634
Google Scholar
[35]
Abbott Po Shun Chen, Chai Wu Liu. Crafting ASR and Conversational Models for an Agriculture Chatbot, , 2021 The 4th International Conference on Computational Intelligence and Intelligent Systems, 2021 https://dl.acm.org/doi/abs/ 10.1145/3507623.3507634.
DOI: 10.1145/3507623.3507634
Google Scholar