[1]
R. Priya, and D. Ramesh, Adaboost. rt based soil npk prediction model for soil and crop specific data: A predictive modelling approach,, In International Conference on Big Data Analytics, Springer, Cham, pp.322-331, December (2018).
DOI: 10.1007/978-3-030-04780-1_22
Google Scholar
[2]
M. A. Zamora-Izquierdo, J. Santa, J. A. Martínez, V. Martínez, and A. F. Skarmeta, (2019). Smart farming IoT platform based on edge and cloud computing,, Biosystems engineering, vol. 177, 2019, pp.4-17.
DOI: 10.1016/j.biosystemseng.2018.10.014
Google Scholar
[3]
S. Veenadhari, B. Misra, and C. D. Singh, Machine learning approach for forecasting crop yield based on climatic parameters,, In 2014 International Conference on Computer Communication and Informatics, IEEE, pp.1-5, January (2014).
DOI: 10.1109/iccci.2014.6921718
Google Scholar
[4]
N. H. Kulkarni, G. N. Srinivasan, B. M. Sagar and N. K. Cauvery, Improving crop productivity through a crop recommendation system using ensembling technique,, In 2018 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions (CSITSS), IEEE, pp.114-119, December (2018).
DOI: 10.1109/csitss.2018.8768790
Google Scholar
[5]
S. Pudumalar, E. Ramanujam, R. H. Rajashree, C. Kavya, T. Kiruthika and J. Nisha, Crop recommendation system for precision agriculture,, In 2016 Eighth International Conference on Advanced Computing (ICoAC), IEEE, pp.32-36, January (2017).
DOI: 10.1109/icoac.2017.7951740
Google Scholar
[6]
Z. Doshi, S. Nadkarni, R. Agrawal and N. Shah, AgroConsultant: Intelligent crop recommendation system using machine learning algorithms,, In 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), IEEE, pp.1-6, August (2018).
DOI: 10.1109/iccubea.2018.8697349
Google Scholar
[7]
R. Mitchell, Web scraping with Python: Collecting more data from the modern web," O,Reilly Media, Inc., (2018).
Google Scholar
[8]
J. I. Fernández Villamor, J. Blasco Garcia, C. A. Iglesias Fernandez and M. Garijo Ayestaran, A semantic scraping model for web resources-Applying linked data to web page screen scraping,, (2011).
DOI: 10.5220/0003185704510456
Google Scholar
[9]
D. S. Sirisuriya, A comparative study on web scraping,, (2015).
Google Scholar
[10]
R. C. Pereira, and T. Vanitha, Web scraping of social networks,, Int. J. Innov. Res. Comput. Commun. Eng, vol. 3(7), 2015, pp.237-240.
Google Scholar
[11]
G. Barcaroli, M. Scannapieco, M. Scarnò, and D. Summa, Using internet as a data source for official statistics: a comparative analysis of web scraping technologies,, (2015).
Google Scholar
[12]
T. U. Rehman, M. S. Mahmud, Y. K. Chang, J. Jin, and J. Shin, Current and future applications of statistical machine learning algorithms for agricultural machine vision systems,, Computers and electronics in agriculture, vol. 156, 2019, pp.585-605.
DOI: 10.1016/j.compag.2018.12.006
Google Scholar
[13]
G. Suresh, A. S. Kumar, S. Lekashri and R. Manikandan, Efficient crop yield recommendation system using machine learning for digital farming,, International Journal of Modern Agriculture, vol. 10(1).
Google Scholar