Weld Joint Reconstruction and Classification Algorithm for Trajectory Generation in Robotic Welding

Article Preview

Abstract:

Automation of welding with robotic arms has become an inevitable trend in modern manufacturing technologies. This process can be automated by using a "click and go" in which the robot will weld a line where the spot is described or by using an in-line tracking algorithm in which the robot will choose the spot where to weld the line in each layer. This paper presents a simple methodology for the reconstruction of the weld joint and the classification of the joint geometry to serve as a first step to the automatic determination of the robot trajectory. The weld joint has been reconstructed using a laser profilometer placed as a tool on the robot. Spurious data has been removed by signal processing. The joint has been reconstructed three-dimensionally. The classification of the joint profiles was generated using an algorithm based on signal processing and artificial intelligence. This algorithm has been tested for the classification of V-joints (bevel-bevel) and single bevel joints.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

120-128

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Pattanayak y S. K. Sahoo, «Gas metal arc welding based additive manufacturing—a review», CIRP Journal of Manufacturing Science and Technology, vol. 33, pp.398-442, may 2021.

DOI: 10.1016/j.cirpj.2021.04.010

Google Scholar

[2] P. K. Palani y N. Murugan, «Optimization of weld bead geometry for stainless steel claddings deposited by FCAW», Journal of Materials Processing Technology, vol. 190, n.o 1, pp.291-299, jul. 2007.

DOI: 10.1016/j.jmatprotec.2007.02.035

Google Scholar

[3] C. V. Gonçalves, L. O. Vilarinho, A. Scotti, y G. Guimarães, «Estimation of heat source and thermal efficiency in GTAW process by using inverse techniques», Journal of Materials Processing Technology, vol. 172, n.o 1, pp.42-51, feb. 2006.

DOI: 10.1016/j.jmatprotec.2005.08.010

Google Scholar

[4] M. M. Mahapatra, G. L. Datta, B. Pradhan, y N. R. Mandal, «Three-dimensional finite element analysis to predict the effects of SAW process parameters on temperature distribution and angular distortions in single-pass butt joints with top and bottom reinforcements», International Journal of Pressure Vessels and Piping, vol. 83, n.o 10, pp.721-729, oct. 2006.

DOI: 10.1016/j.ijpvp.2006.07.011

Google Scholar

[5] J. A. Girón-Cruz, J. E. Pinto-Lopera, y S. C. A. Alfaro, «Weld bead geometry real-time control in gas metal arc welding processes using intelligent systems», Int J Adv Manuf Technol, vol. 123, n.o 11, pp.3871-3884, dic. 2022.

DOI: 10.1007/s00170-022-10384-z

Google Scholar

[6] E. Aldalur, A. Suárez, y F. Veiga, «Metal transfer modes for Wire Arc Additive Manufacturing Al-Mg alloys: Influence of heat input in microstructure and porosity», Journal of Materials Processing Technology, vol. 297, 2021.

DOI: 10.1016/j.jmatprotec.2021.117271

Google Scholar

[7] E. A. Gyasi, P. Kah, S. Penttilä, J. Ratava, H. Handroos, y L. Sanbao, «Digitalized automated welding systems for weld quality predictions and reliability», Procedia Manufacturing, vol. 38, pp.133-141, ene. 2019.

DOI: 10.1016/j.promfg.2020.01.018

Google Scholar

[8] E. A. Gyasi, P. Kah, S. Penttilä, J. Ratava, H. Handroos, y L. Sanbao, «Digitalized automated welding systems for weld quality predictions and reliability», Procedia Manufacturing, vol. 38, pp.133-141, ene. 2019.

DOI: 10.1016/j.promfg.2020.01.018

Google Scholar

[9] J. Mirapeix, A. Cobo, D. A. González, y J. M. López-Higuera, «Plasma spectroscopy analysis technique based on optimization algorithms and spectral synthesis for arc-welding quality assurance», Optics Express, vol. 15, n.o 4, pp.1884-1897, 2007.

DOI: 10.1364/OE.15.001884

Google Scholar

[10] G. A. Bestard, R. C. Sampaio, J. A. R. Vargas, y S. C. A. Alfaro, «Sensor Fusion to Estimate the Depth and Width of the Weld Bead in Real Time in GMAW Processes», Sensors, vol. 18, n.o 4, Art. n.o 4, abr. 2018.

DOI: 10.3390/s18040962

Google Scholar

[11] P. Kah, M. Shrestha, E. Hiltunen, y J. Martikainen, «Robotic arc welding sensors and programming in industrial applications», International Journal of Mechanical and Materials Engineering, vol. 10, n.o 1, p.13, jul. 2015.

DOI: 10.1186/s40712-015-0042-y

Google Scholar

[12] K. C. Tsao y C. S. Wu, «Modelling the three-dimensional fluid flow and heat transfer in a moving weld pool», Engineering Computations, vol. 7, n.o 3, pp.241-248, 1990.

DOI: 10.1108/eb023811

Google Scholar

[13] S. Chen, T. Sun, X. Jiang, J. Qi, y R. Zeng, «Online monitoring and evaluation of the weld quality of resistance spot welded titanium alloy», Journal of Manufacturing Processes, vol. 23, pp.183-191, ago. 2016.

DOI: 10.1016/j.jmapro.2016.06.003

Google Scholar

[14] Y. Liu, J. Liu, y X. Tian, «An approach to the path planning of intersecting pipes weld seam with the welding robot based on non-ideal models», Robotics and Computer-Integrated Manufacturing, vol. 55, pp.96-108, feb. 2019.

DOI: 10.1016/j.rcim.2018.07.010

Google Scholar

[15] J. Zeng et al., «A Weld Position Recognition Method Based on Directional and Structured Light Information Fusion in Multi-Layer/Multi-Pass Welding», Sensors, vol. 18, n.o 1, Art. n.o 1, ene. 2018.

DOI: 10.3390/s18010129

Google Scholar

[16] S. M. Ahmed, J. Yuan, Y. Wu, C. M. Chew, y C. K. Pang, «Collision-free path planning for multi-pass robotic welding», en 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), sep. 2015, pp.1-4.

DOI: 10.1109/etfa.2015.7301594

Google Scholar

[17] F. Veiga, A. Suarez, E. Aldalur, y T. Artaza, «Wire arc additive manufacturing of invar parts: Bead geometry and melt pool monitoring», Measurement, vol. 189, p.110452, feb. 2022.

DOI: 10.1016/j.measurement.2021.110452

Google Scholar