[1]
Koren, Y., and M. Shpitalni. 2010. "Design of reconfigurable manufacturing systems" Journal of Manufacturing Systems, 29(4), 130–141
DOI: 10.1016/j.jmsy.2011.01.001
Google Scholar
[2]
Bortolini, M., F. G Galizia, and C. Mora. 2018. "Reconfigurable manufacturing systems: Literature review and research trend" Journal of Manufacturing Systems 49:93–106
DOI: 10.1016/j.jmsy.2018.09.005
Google Scholar
[3]
Prasad, Durga Ts and S. C. Jayswal. "Reconfigurable Manufacturing System - a New Class of Manufacturing System." Management and Production Engineering Review 10 (2019): 37-47.
Google Scholar
[4]
Taisch, M., M. L. Casidsid, G. May, T. R. Morin, V. Padelli, M. Pinzone, and T. Wuest. 2020. "World Manufacturing Forum 2020. Back to the Future: Manufacturing beyond Covid-19." ISBN: 978-88-94386-16-5.
Google Scholar
[5]
Terkaj, W., and M. Urgo. 2014. "Ontology-based modelling of production systems for design and performance evaluation" Proceedings 2014 12th IEEE International Conference on Industrial Informatics, INDIN 2014, pp.748-753.
DOI: 10.1109/indin.2014.6945606
Google Scholar
[6]
Pansare, R., G. Yadav, and M.R. Nagare. 2021. "Reconfigurable manufacturing system: a systematic review, meta-analysis and future research directions" Journal of Engineering, Design and Technology
DOI: 10.1108/JEDT-05-2021-0231
Google Scholar
[7]
Maganha, I., C. Silva, and L.M.D.F. Ferreira. 2019. "The layout design in reconfigurable manufacturing systems: a literature review" International Journal of Advanced Manufacturing Technology 105 (1–4), 683–700
DOI: 10.1007/s00170-019-04190-3
Google Scholar
[8]
Yelles-Chaouche, A.R., E. Gurevsky, N. Brahimi, and A. Dolgui. 2020. "Reconfigurable manufacturing systems from an optimisation perspective: a focused review of literature" International Journal of Production Research 59(21)
DOI: 10.1080/00207543.2020.1813913
Google Scholar
[9]
Bouissiere, F., C. Cuiller, P. E. Dereux, C. Malchair, C. Favi, and G. Formentini. 2019. "Conceptual Design for Assembly in Aerospace Industry: A Method to Assess Manufacturing and Assembly Aspects of Product Architectures" Proceedings of the Design Society: International Conference on Engineering Design 1 (1): 2961–70
DOI: 10.1017/dsi.2019.303
Google Scholar
[10]
Arista, R., F. Mas, D. Morales-Palma, and C. Vallellano. 2022. "Industrial Resources in the design of Reconfigurable Manufacturing Systems for aerospace: A systematic literature review" Computers in Industry 142, 103719
DOI: 10.1016/j.compind.2022.103719
Google Scholar
[11]
Mas, F., M. Oliva, J. Racero, and D. Morales-Palma. 2018. "A Preliminary Methodological Approach to Models for Manufacturing (MfM)" Product Lifecycle Management to Support Industry 4.0. PLM 2018. IFIP Advances in Information and Communication Technology 540.
DOI: 10.1007/978-3-030-01614-2_25
Google Scholar
[12]
NIST: Integration Definition for Function Modeling (IDEF0). Computer Systems Laboratory of the National Institute of Standards and Technology, December 1993. http://www.idef.com/wp-content/uploads/2016/02/idef0.pdf [Accessed March 2023].
DOI: 10.6028/nist.fips.183
Google Scholar
[13]
A. J. Cañas, R. Carff, G. Hill, M. Carvalho, M. Arguedas, T. C. Eskridge, J. Lott, R. Carvajal, Concept Maps: Integrating Knowledge and Information Visualization, in Knowledge and Information Visualization: Searching for Synergies, S.-O. Tergan, and T. Keller, Editors. 2005. Heidelberg / New York: Springer Lecture Notes in Computer Science.
DOI: 10.1007/11510154_11
Google Scholar
[14]
Wen, Y., X. Yue, J. H. Hunt, and J. Shi. 2019. "Virtual assembly and residual stress analysis for the composite fuselage assembly process" Journal of Manufacturing Systems 52: 55–62
DOI: 10.1016/j.jmsy.2019.04.001
Google Scholar
[15]
Jefferson, T.G., S. Ratchev, and R. Crossley. 2014. "Axiomatic design of a reconfigurable assembly system for primary wing structures" SAE International Journal of Aerospace 7 (2)
DOI: 10.4271/2014-01-2249
Google Scholar
[16]
Celek, O.E., M. Yurdakul, and T. Ic. 2019. "Axiomatic design of a reconfigurable assembly system for aircraft fuselages" SAE Technical Papers
DOI: 10.4271/2019-01-1359
Google Scholar
[17]
Kumar, S.P. L.. 2019. "Knowledge-based expert system in manufacturing planning: state-of-the-art review" International Journal of Production Research 57 (15-16): 4766-4790
DOI: 10.1080/00207543.2018.1424372
Google Scholar
[18]
F. Mas, J. Rios, J.L. Menendez, and A. Gomez. 2013. "A process-oriented approach to modelling the conceptual design of aircraft assembly lines" The International Journal of Advanced Manufacturing Technology 67(1-4): 771-784.
DOI: 10.1007/s00170-012-4521-5
Google Scholar
[19]
C. Zheng, Y. An, Z. Wang, X. Qin, B. Eynard, M. Bricogne, J. Le Duigou, and Y. Zhang. 2022. "Knowledge-based engineering approach for defining robotic manufacturing system architectures" International Journal of Production Research
DOI: 10.1080/00207543.2022.2037025
Google Scholar
[20]
Liu, J., P. Zhao, X. Jing, X. Cao, S. Sheng, H. Zhou, X. Liu, and F. Feng. 2022. "Dynamic design method of digital twin process model driven by knowledge-evolution machining features" International Journal of Production Research 60 (7): 2312-2330
DOI: 10.1080/00207543.2021.1887531
Google Scholar
[21]
Ríos, J., Jiménez, J. V., Pérez, J., Vizán, A., Menéndez, J. L., & Más, F. (2005). KBE Application for the Design and Manufacture of HSM Fixtures. Acta Polytechnica, 45(3).
DOI: 10.14311/698
Google Scholar
[22]
Morales-Palma, D., M. Oliva, C. Vallellano, and F. Mas. 2022. "Enhanced Metamodels Approach Supporting Models for Manufacturing (MfM) methodology" IFIP International Conference on Product Lifecycle Management PLM22. https://ceur-ws.org/Vol-3240/paper1.pdf
DOI: 10.1007/978-3-030-94399-8_29
Google Scholar
[23]
Morales-Palma, D., Mas, F., Racero, J., Vallellano, C. (2018). A Preliminary Study of Models for Manufacturing (MfM) Applied to Incremental Sheet Forming. In: Chiabert, P., Bouras, A., Noël, F., Ríos, J. (eds) Product Lifecycle Management to Support Industry 4.0. PLM 2018. IFIP Advances in Information and Communication Technology, vol 540. Springer, Cham
DOI: 10.1007/978-3-030-01614-2_26
Google Scholar
[24]
Arista, R., F. Mas, D. Morales-Palma, M. Oliva, and C. Vallellano. 2021. "A preliminary Ontology-based Engineering application to Industrial System reconfiguration in conceptual phase" CEUR Workshop Proceedings of FOMI 2021: 11th International Workshop on Formal Ontologies Meet Industry. https://ceur-ws.org/Vol-2969/paper20-FOMI.pdf
DOI: 10.1007/978-3-319-21545-7_3
Google Scholar
[25]
Arista, R., F. Mas, and C. Vallellano. 2020. "Initial Approach to an Industrial Resources Ontology in Aerospace Assembly Lines" IFIP International Conference on Product Lifecycle Management PLM20 285–294
DOI: 10.1007/978-3-030-62807-9_23
Google Scholar
[26]
Arista, R., F. Mas, D. Morales-Palma, D. Ernadote, M. Oliva, and C. Vallellano. 2022. "Evaluation of a commercial Model Lifecycle Management (MLM) tool to support Models for Manufacturing (MfM) methodology" IFIP Advances in Information and Communication Technology 667
DOI: 10.1007/978-3-031-25182-5_65
Google Scholar
[27]
Mas, F., J. Racero, M. Oliva, and D. Morales-Palma. 2019. "Preliminary ontology definition for aerospace assembly lines in Airbus using Models for Manufacturing methodology" Procedia Manufacturing 28: 207–213
DOI: 10.1016/j.promfg.2018.12.034
Google Scholar
[28]
Arista, Rebeca, Fernando Mas, Domingo Morales-Palma, and Carpoforo Vallellano. 2022. "Industrial Resources in the Design of Reconfigurable Manufacturing Systems for Aerospace: A Systematic Literature Review." Computers in Industry 142: 103719.
DOI: 10.1016/j.compind.2022.103719
Google Scholar