[1]
Herterich MM, Uebernickel F, Brenner W. The Impact of Cyber-Physical Systems on Industrial Services in Manufacturing. Procedia CIRP. 2015;30:323–8.
DOI: 10.1016/j.procir.2015.02.110
Google Scholar
[2]
Favi C, Campi F, Germani M, Manieri S. Using Design Information to Create a Data Framework and Tool for Life Cycle Analysis of Complex Maritime Vessels. J Clean Prod. 2018; 192:887–905.
DOI: 10.1016/j.jclepro.2018.04.263
Google Scholar
[3]
Baginski L, Pitassi C, Pereira Barbosa JG. Technological Capability in the Brazilian Naval Industry: a Metric for Offshore Support Vessels. Rev Adm e Inovação. 2017;14(2):109–18.
DOI: 10.1016/j.rai.2017.03.002
Google Scholar
[4]
Eriksson T, Vahlo J, Rissanen T, Koponen A. Management Myopia and Project Management. Insiders vs Outsiders. In: Innovation Symposium. Fukuoka (Japan): ISPIM; 2018. p.1–9.
Google Scholar
[5]
Cerezo-Narváez A, Otero-Mateo M, Rodríguez-Pecci F, Pastor-Fernández A. Digital Transformation of Requirements in the Industry 4.0: Case of Naval Platforms. DYNA Ing e Ind. 2018;93(1):448–56.
DOI: 10.6036/8636
Google Scholar
[6]
Rouco M, Quiroga M, Cebral M, Morgade R, García A, Morgade D. Shipyard 4.0: The Ferrol Navantia Shipyard Model for Planning in Shipbuilding. In: 56th Congress of Naval Engineering and Maritime Industry. Madrid (Spain): AINE; 2017. p.1–15.
Google Scholar
[7]
Hmeshah K, Erbach N, Bronsart R. Impact of Production Requirements on High-Quality Ship Product Data Models. J Eng Marit Environ. 2016;230(3):508–22.
DOI: 10.1177/1475090215597593
Google Scholar
[8]
Recamán Á. Navantia's Shipyard 4.0 Model Overview. Sh Sci Technol J. 2018 Mar 20; 11(22): 77.
Google Scholar
[9]
Sánchez-Sotano A, Cerezo-Narváez A, Abad-Fraga F, Pastor-Fernández A, Salguero-Gómez J. Trends of Digital Transformation in the Shipbuilding Sector. In: New Trends in the Use of Artificial Intelligence for the Industry 40. London (UK): IntechOpen; 2020. p.1–23.
DOI: 10.5772/intechopen.91164
Google Scholar
[10]
Finke DA, Ligetti CB, Traband MT, Roy A. Shipyard Space Allocation and Scheduling. J Sh Prod. 2007 Nov 1;23(04):197–201.
DOI: 10.5957/jsp.2007.23.4.197
Google Scholar
[11]
Kim KS, Hwang HJ, Lee JH. Discrete Event Simulation for the Initial Capacity Estimation of Shipyard Based on the Master Production Schedule. Trans Soc CAD/CAM Eng. 2012 Apr 1; 17 (2): 111–22.
DOI: 10.7315/cadcam.2012.111
Google Scholar
[12]
Gómez P, Angulo M. Knowledge Management Applied to Productive Process. In: Proceeding of the VI International Ship Design & Naval Engineering Congress and XXVI Pan-American Congress of Naval Engineering, Maritime Transportation and Port Engineering. Cham (Switzerland): Springer; 2020. p.275–86.
DOI: 10.1007/978-3-030-35963-8_23
Google Scholar
[13]
Hu Y, Wang C, Mao Y, Lee P, Zhou Y, Xiang Z. Establishment of Profile Production Line For Shipbuilding In Shipyard. In: Nineteenth International Offshore and Polar Engineering Conference. Osaka (Japan): ISOPE; 2009. p.795–9.
Google Scholar
[14]
Sulistiyono N. Ship Building Construction Systems. KnE Soc Sci. 2021;IWPOSPA 20:556–72.
Google Scholar
[15]
Jiang Z, Zhou H, Tao N, Li B. Knowledge-Based Curved Block Construction Scheduling and Application in Shipbuilding. J Shanghai Jiaotong Univ. 2022;391.
DOI: 10.1007/s12204-022-2544-0
Google Scholar
[16]
Yang B, Chen J, Xiao M, Liu L, Sun Y, Xie J. Research on Combined Ventilation Technology in Large Painting Workshop. In: Long S, Dhillon BS, editors. Man-Machine-Environment System Engineering. Singapore: Springer; 2022. p.481–7.
DOI: 10.1007/978-981-16-5963-8_67
Google Scholar
[17]
Bruce G. Assembly. In: Shipbuilding Management. Singapore: Springer; 2021. p.141–51.
Google Scholar
[18]
Starr A, Al-Najjar B, Holmberg K, Jantunen E, Bellew J, Albarbar A. Maintenance Today and Future Trends. In: Holmberg K, Adgar A, Arnaiz A, Jantunen E, Mascolo J, Mekid S, editors. E-maintenance. London (GB): Springer; 2010. p.5–37.
DOI: 10.1007/978-1-84996-205-6_2
Google Scholar
[19]
Bu H, Ji X, Yuan X, Han Z, Li L, Yan Z. Calculation of Coating Consumption Quota for Ship Painting: a CS-GBRT Approach. J Coatings Technol Res. 2020 Nov 29;17(6):1597–607.
DOI: 10.1007/s11998-020-00376-7
Google Scholar
[20]
Hopkinson A, Mihaylova R, Kattan R. The Future of Ship Painting. J Prot Coatings Linings. 2020; 37(11):1–6.
Google Scholar
[21]
International Council of Marine Industry Associations. 2016 Quarterly Economic Statistics Report. Brussels (Belgium); 2017.
Google Scholar
[22]
Campbell Holms A. Practical Shipbuilding: A Treatise On The Structural Design And Building Of Modern Steel Vessels. London (GB): Arkose Press; 2015. 662 p.
Google Scholar
[23]
Wei C, Wang G, Cridland M, Olson DL, Liu S. Corrosion Protection of Ships. In: Kutz M, editor. Handbook of Environmental Degradation of Materials. 3rd ed. Oxford (GB): Elsevier; 2018. p.533–57.
DOI: 10.1016/b978-0-323-52472-8.00026-5
Google Scholar
[24]
Urbahs A, Savkovs K, Rijkuris G, Andrejeva D. Corrosion and Wear Analysis in Marine Transport Constructions. Transp Aerosp Eng. 2018 Feb 28;6(1):5–14.
DOI: 10.1515/tae-2018-0001
Google Scholar
[25]
Mieno H, Masuda H. Friction Increase due to Roughness of Ship Hull Paint. Mar Eng. 2013; 48(3): 300–7.
Google Scholar
[26]
Mieno H. Friction Increase due to Roughness of Ship Hull Paint (Part 2) - Frictional Drag Reduction by Hull Coatings. Mar Eng. 2021 Nov 1;56(6):927–33.
DOI: 10.5988/jime.56.927
Google Scholar
[27]
I, Holm ER, Hertel WM. Economic Impact of Biofouling on a Naval Surface Ship. Biofouling. 2011 Jan 14;27(1):87–98.
DOI: 10.1080/08927014.2010.542809
Google Scholar
[28]
Ravel B. Antifouling Coatings: a Need for Innovation. J Prot Coatings Linings. 2020; 37(8): 30–6.
Google Scholar
[29]
Jiang G, Feng D, Zhu W. Lean Shipbuilding for Project-based Manufacturing. In: 2015 Industrial and Systems Engineering Research Conference. Nashville (TN, USA): IISE; 2015. p.1730–9.
Google Scholar
[30]
Button RW, Martin B, Sollinger JM, Tidwell A. Assessment of Surface Ship Maintenance Requirements. Santa Monica (CA, USA): RAND Corporation; 2015. 58 p.
DOI: 10.7249/rr1155
Google Scholar
[31]
Munger CG, Vincent L, Shifler DA. Marine Coatings. In: Shifler DA, editor. LaQue's Handbook of Marine Corrosion. 2nd ed. Hoboken (NJ, USA): Wiley; 2022. p.527–71. (The electromechemical Society).
DOI: 10.1002/9781119788867.ch19
Google Scholar
[32]
Piola R, Grandison C, Shimeta J, del Frate A, Leary M. Can Vessel Sea Chest Design Improve Fouling Control Coating Performance? Ocean Eng. 2022 Jul;256:111426.
DOI: 10.1016/j.oceaneng.2022.111426
Google Scholar
[33]
Manoj S, Mahesh S, Srikanth N. Review of Biofouling Paints on the Marine Vessel. In: Asian Conference on Energy, Power and Transportation Electrification. Singapore: IEEE; 2018. pp.1-6.
DOI: 10.1109/acept.2018.8610796
Google Scholar
[34]
Zhang L, Kong FS, Fan SQ, Jiang S. Research on Quality Control of Ship Painting Based on Improved Scatter Plot. In: 18th International Conference on Industrial Engineering and Engineering Management. Changchun (China): IEEE; 2011. p.1048–51.
DOI: 10.1109/icieem.2011.6035336
Google Scholar
[35]
Rahman A, Karim MM. Green Shipbuilding and Recycling: Issues and Challenges. Int J Environ Sci Dev. 2015;6(11):838–42.
Google Scholar
[36]
Murphy W, Nicholson J. Instructors' Manual on Achieving Health and Safety in the Building and Repair of Ships and Boats. Orono (ME, USA): University of Maine Bureau of Labor Education; 2004. 104 p.
Google Scholar
[37]
Ozkok M. Risk Assessment in Ship Hull Structure Production using FMEA. J Mar Sci Technol. 2014;22(2):173–85.
Google Scholar
[38]
Wulandari KN, Tualeka AR, Widajati N, Fitri N. Risk Assessment on Hull Painting Process at Shipyard. KnE Life Sci. 2018;4(5):30–45.
DOI: 10.18502/kls.v4i5.2537
Google Scholar
[39]
Lu Y, Riddick F, Ivezic N. The Paradigm Shift in Smart Manufacturing System Architecture. In: Nääs I, Vendrametto O, Reis JM, Gonçalves RF, Silva MT, Cieminski G von, et al., editors. Advances in Production Management Systems Initiatives for a Sustainable World. Cham: Springer; 2016. p.767–76.
DOI: 10.1007/978-3-319-51133-7_90
Google Scholar
[40]
Fraga-Lamas P, Fernandez-Carames TM, Blanco-Novoa O, Vilar-Montesinos MA. A Review on Industrial Augmented Reality Systems for the Industry 4.0 Shipyard. IEEE Access. 2018; 6: 13358–75.
DOI: 10.1109/access.2018.2808326
Google Scholar
[41]
Pérez Fernández R, Alonso V. Virtual Reality in a Shipbuilding Environment. Adv Eng Softw. 2015 Mar;81:30–40.
Google Scholar
[42]
Ma H, Lee S. Smart System to Detect Painting Defects in Shipyards: Vision AI and a Deep-Learning Approach. Appl Sci. 2022 Feb 25;12(5):2412.
DOI: 10.3390/app12052412
Google Scholar
[43]
Kunkera Z, Opetuk T, Hadžić N, Tošanović N. Using Digital Twin in a Shipbuilding Project. Appl Sci. 2022 Dec 12;12(24):12721.
DOI: 10.3390/app122412721
Google Scholar
[44]
Munín-Doce A, Díaz-Casás V, Trueba P, Ferreno-González S, Vilar-Montesinos M. Industrial Internet of Things in the Production Environment of a Shipyard 4.0. Int J Adv Manuf Technol. 2020; 108(1–2):47–59.
DOI: 10.1007/s00170-020-05229-6
Google Scholar
[45]
Park J, Kim H, Yoon J, Kim H, Park C, Hong D. Development of an Ultrasound Technology-Based Indoor-Location Monitoring Service System for Worker Safety in Shipbuilding and Offshore Industry. Processes. 2021 Feb 5;9(2):304.
DOI: 10.3390/pr9020304
Google Scholar
[46]
Yuping L, Zhengyao Y, Yan L, Zhuoshang J, Xiaoning J, Fei P, et al. The Basic Functional Design of Wall Climbing Robot for Hull Plate Spraying in Dock. In: 2nd International Conference on Robotics and Automation Engineering. Shanghai (China): IEEE; 2017. pp.89-93.
DOI: 10.1109/icrae.2017.8291359
Google Scholar
[47]
Lee D. Robots in the Shipbuilding Industry. Robot Comput Integr Manuf. 2014 Oct; 30(5): 442–50.
Google Scholar
[48]
Fine WT. Mathematical Evaluations for Controlling Hazards. J Safety Res. 1971;3(4):157–66.
Google Scholar
[49]
Kinney GF, Wiruth AD. Practical Risk Analysis for Safety Management. China Lake (CA,USA); 1976.
Google Scholar
[50]
Gul M, Mete S, Serin F, Celik E. Fine–Kinney Occupational Risk Assessment Method and Its Extensions by Fuzzy Sets: A State-of-the-Art Review. In: Fine–Kinney-Based Fuzzy Multi-criteria Occupational Risk Assessment. Cham (Switzerland): Springer; 2021. p.1–11.
DOI: 10.1007/978-3-030-52148-6_1
Google Scholar
[51]
Simankina T, Romanovich M, Sharmanov V, Mamaev A, Blagodatskaya A. Risk-based Construction Safety Index as an Integral Indicator in the Agricultural Sector. Rudoy D, Ignateva S, editors. E3S Web Conf. 2020 Jun 29;175:12001.
DOI: 10.1051/e3sconf/202017512001
Google Scholar
[52]
Oturakçi M, Dağsuyu C, Kokangül A. A New Approach to Fine Kinney Method and an Implementation Study. Alphanumeric J. 2015;3(2):83–92.
DOI: 10.17093/aj.2015.3.2.5000139953
Google Scholar
[53]
Yalçın ZG, Kıratlı S, Dağ M. in the Defense Industry, Covid-19 Risk Assessment Using the Fine-Kinney Method. In: Kurt Hİ, Sandal Erzurumlu G, editors. Engineering and Architecture Science. Lyon (France): Livre de Lyon; 2022. p.119–38.
Google Scholar
[54]
Korkmaz E, Iskender G, Babuna FG. Assessment of Occupational Health and Safety for a Gas Meter Manufacturing Plant. Earth Environ Sci. 2016;44:032015.
DOI: 10.1088/1755-1315/44/3/032015
Google Scholar
[55]
Baç N, Ekmekci I. Psychosocial Risk Assessment by Fine Kinney and ANFIS Method: A Case Study in a Metal Processing Plant. In: Advances in Safety Management and Human Performance. Cham (Switzerland): Springer; 2020. p.84–90.
DOI: 10.1007/978-3-030-50946-0_12
Google Scholar
[56]
Gul M, Celik E. Fuzzy Rule-Based Fine–Kinney Risk Assessment Approach for Rail Transportation Systems. Hum Ecol Risk Assess An Int J. 2018 Oct 3;24(7):1786–812.
DOI: 10.1080/10807039.2017.1422975
Google Scholar
[57]
Cruz ZG, De La Torre E, Martínez JL. Adaptation of the Fine-Kinney Method in Supply Chain Risk Assessment. WIT Trans Built Environ. 2018;174:43–55.
Google Scholar
[58]
National Institute for Safety and Health at Work. Technical Guide for the Assessment and Prevention of Risks Related to the Use of Workplaces. Madrid (Spain): INSST; 2015. 90 p.
Google Scholar
[59]
Crispim J, Fernandes J, Rego N. Customized Risk Assessment in Military Shipbuilding. Reliab Eng Syst Saf. 2020 May;197:106809.
DOI: 10.1016/j.ress.2020.106809
Google Scholar
[60]
Efe B. Analysis of Operational Safety Risks in Shipbuilding Using Failure Mode and Effect Analysis Approach. Ocean Eng. 2019 Sep;187:106214.
DOI: 10.1016/j.oceaneng.2019.106214
Google Scholar
[61]
Njumo DA. Fault Tree Analysis (FTA) - Formal Safety Assesssment (FSA) in Ship Repair Industry a Made Easy Approach. Int J Marit Eng. 2021 Dec 13;155(A1).
DOI: 10.5750/ijme.v155ia1.893
Google Scholar
[62]
Kletz T. The History of Hazop and Hazan. In: Hazop and Hazan. 4th ed. Boca Raton (FL, USA): CRC Press; 2018. p.223–32.
DOI: 10.1201/9780203752227-7
Google Scholar
[63]
Fera M, Macchiaroli R. Appraisal of a New Risk Assessment Model for SME. Saf Sci. 2010 Dec; 48 (10):1361–8.
DOI: 10.1016/j.ssci.2010.05.009
Google Scholar
[64]
Rodríguez C, Lorenzo O, Herrera L. Theory and Practice of Qualitative Data Analysis. General Process and Quality Criteria. Int J Soc Sci Humanit. 2005;15(2):133–54.
Google Scholar
[65]
Eisenhardt KM, Graebner ME. Theory Building from Cases: Opportunities and Challenges. Acad Manag J. 2007 Feb;50(1):25–32.
Google Scholar
[66]
Carral L, Tarrío-Saavedra J, Iglesias G, San-Cristobal JR. Evaluation of the Structural Complexity of Organisations and Products in Naval-Shipbuilding Projects. Ships Offshore Struct. 2021 Jul 3;16(6):670–85.
DOI: 10.1080/17445302.2020.1773049
Google Scholar
[67]
Hermans E, van den Bossche F, Wets G. Impact of Methodological Choices on Model Safety Ranking. In: Fifth International Conference on Sensitivity Analysis of Model Output. Budapest (Hungary): Eötvös University; 2007. p.18–22.
Google Scholar
[68]
Gangolells M, Casals M, Forcada N, Roca X, Fuertes A. Mitigating Construction Safety Risks Using Prevention through Design. J Safety Res. 2010 Apr;41(2):107–22.
DOI: 10.1016/j.jsr.2009.10.007
Google Scholar
[69]
Ramírez-Peña M, Cerezo-Narváez A, Pastor-Fernández A, Otero-Mateo M, Ballesteros-Pérez P. Determination of Requirements for the Improvement of Occupational Safety in the Cleaning of Vertical Tanks of Petroleum Products. Safety. 2023 Feb 2;9(1):6.
DOI: 10.3390/safety9010006
Google Scholar
[70]
Celebi UB, Ekinci S, Alarcin F, Ünsalan D. The Risk of Occupational Safety and Health in Shipbuilding Industry in Turkey. In: 3rd International Conference on Maritime and Naval Science and Engineering. Constantza (Romania): WSEAS; 2010. p.178–85.
Google Scholar
[71]
Jeong BY, Kim WJ, Jeong YS. Risk Assessment in the Shipbuilding Industry: Present and the Future. J Ergon Soc Korea. 2012 Feb 29;31(1):143–9.
Google Scholar
[72]
Romuald Iwańkowicz R, Rosochacki W. Clustering Risk AssessmentMethod for Shipbuilding Industry. Ind Manag Data Syst. 2014 Oct 7;114(9):1499–518.
DOI: 10.1108/imds-06-2014-0193
Google Scholar
[73]
Hossain NUI, Nur F, Jaradat RM. An Analytical Study of Hazards and Risks in the Shipbuilding Industry. In: International Annual Conference of the American Society for Engineering Management. Charlotte (NC, USA): ASEM; 2016. p.239–46.
Google Scholar
[74]
Haq AZM. Occupational Hazards of the Shipbuilding Industry in Bangladesh. Theory, Methodol Pract. 2022;18(2):93–102.
Google Scholar