Optimization Using Central Composite Design (CCD) on Cellulose Acetate/Polyethylene Glycol Composite Beads for Adsorption of Methylene Blue in Batch System

Article Preview

Abstract:

Textile dyes waste can cause a big problem for the environment. Adsorption is a simple approach in treatment of textile dyes waste. On the other hand, the use of disposable adsorbents also creates production cost problems because they are less economic. Currently, research on adsorbents is forwarded to the use of biopolymers such as chitosan, chitin, and cellulose. This research studied the use of cellulose beads, made from cellulose acetate (CA) blended with polyethylene glycol 200 (PEG200), as adsorbent in removing cationic dye of methylene blue (MB). Adsorption performance of cellulose beads was evaluated and optimized under variation of adsorption conditions (pH, beads dose, dye concentration) and PEG200 content. Optimization was carried out by using response surface methodology (RSM) with a face-centered central composite design (FCCD) model. The results showed that the optimum condition was obtained at pH of 7, beads dose of 2 g/L, dye concentration of 20 mg/L for bead composition of CA/PEG200 (90/10). The optimum % dye removal predicted by the design model was 52.4706 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-104

Citation:

Online since:

January 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Mani, P. Chowdhary, R.N. Bharagava, Textile wastewater dyes: toxicity profile and treatment approaches. In: Emerging and Eco-Friendly Approaches for Waste Management. Springer, Singapore (2019) 219–244.

DOI: 10.1007/978-981-10-8669-4_11

Google Scholar

[2] S. Zainith, S. Sandhya, G. Saxena, R.N. Bharagava, Microbes an ecofriendly tools for the treatment of industrial waste waters. In: Microbes and Environmental Managemen. Studium Press, New Delhi (2016) 1:78–103.

Google Scholar

[3] A.H. Jawad, A.M. Kadhum, Y. Ngoh, Applicability of dragon fruit (Hylocereus polyrhizus) peels as low-cost biosorbent for adsorption of methylene blue from aqueous solution: kinetics, equilibrium and thermodynamics studies, Desal. Water Treat. 109 (2018) 231–240.

DOI: 10.5004/dwt.2018.21976

Google Scholar

[4] S.S. Salih, A. Mahdi, M. Kadhom, T.K. Ghosh, Competitive adsorption of As(III) and As(V) onto chitosan/diatomaceous earth adsorbent, J. Environ. Chem. Eng. 7 (5) (2019) 103407.

DOI: 10.1016/j.jece.2019.103407

Google Scholar

[5] M. Kadhom, N. Albayati, H. Alalwan, M. Al-Furaiji, Removal of dyes by agricultural waste, Sust. Chem. & Pharmacy 16 (2020) 100259.

DOI: 10.1016/j.scp.2020.100259

Google Scholar

[6] J. Rana, G. Goindi, N. Kaur, Potential of cellulose acetate for the removal of methylene blue dye from aqueous streams, IJITEE 8 (2020) 2278-3075.

DOI: 10.35940/ijitee.i8628.0881019

Google Scholar

[7] L. Qiao, S. Li, Y. Li, Y. Liu, K. Du, Fabrication of superporous cellulose beads via enhanced inner crosslinked linkages for high efficient adsorption of heavy metal ions. J. Cleaner Production 253 (2020) 120017.

DOI: 10.1016/j.jclepro.2020.120017

Google Scholar

[8] H. Ni'mah, D. Puspitasari, A.R. Kurniawan, B. Muiz, A. Roesyadi, F. Kurniawansyah, E.O. Ningrum, 2020. Kinetic study of cationic dye adsorption on cellulose acetate butyrate/poly(L-lactic acid) composite beads, AIP Conf. Proc. 2197 (2020) 120002.

DOI: 10.1063/1.5140959

Google Scholar

[9] M.N.F. Rofaudin, A.P. Qoidani, D. Puspitasari, H.K. Arnanda, H. Ni'mah, A. Roesyadi, F. Kurniawansyah, E.O. Ningrum, Prediction of continuous adsorption performance of cellulose acetate butyrate/poly(L-lactid acid) composite beads for dye removal, IOP Conf. Series: Mater. Sci. & Eng. 1053 (2021) 012008.

DOI: 10.1088/1757-899x/1053/1/012008

Google Scholar

[10] B.A.D. Caesario, M.D.R. Ali, D. Puspitasari, H.K. Arnanda, H. Ni'mah, F. Kurniawansyah, E.O. Ningrum, Cellulose-Based beads for cationic dye removal in continuous adsorption. Mater. Today: Proc. 63 (2022) S354–S358.

DOI: 10.1016/j.matpr.2022.03.547

Google Scholar

[11] H. Ni'mah, E.M. Woo, Coexisting straight, radial, and banded lamellae on the six corners of hexagon-shaped spherulites in poly(L-lactide), Macromol. Chem. Phys. 215 (2014) 1838−1847.

DOI: 10.1002/macp.201400211

Google Scholar

[12] H. Ni'mah, E.M. Woo, Effects of glycine-based ionic liquid on spherulite morphology of poly(L-lactide), Macromol. Chem. Phys. 216 (2015) 1291−1301.

DOI: 10.1002/macp.201500046

Google Scholar

[13] H. Ni'mah, E.O. Ningrum, S. Sumarno, D.N. Rizkiyah, I.G.A.G.C. Divta, M. Meiliefiana, M.A. Subaghio, Effect of particle size and crystallinity of cellulose filler on the properties of poly (L-lactic acid): Mechanical property and thermal stability, AIP Conf. Proc. 1840 (2017) 090009-1–090009-8.

DOI: 10.1063/1.4982317

Google Scholar

[14] H. Ni'mah, R. Rochmadi, E.M. Woo, D.A. Widiasih, S. Mayangsari, Preparation and characterization of poly(L-lactic acid) films plasticized with glycerol and maleic anhydride, Int. J. Technol. 10 (3) (2019) 531-540.

DOI: 10.14716/ijtech.v10i3.2936

Google Scholar

[15] M. Gericke, J. Trygg, P. Fardim, Functional cellulose beads: Preparation, characterization, and applications. Chem. Rev. 113 (7) (2012) 4812–4836.

DOI: 10.1021/cr300242j

Google Scholar

[16] M. Behbahani, M.R. Alavi Moghaddam, M. Arami, Techno-economical evaluation of fluoride removal by electrocoagulation process: Optimization through response surface methodology, Desalination 271 (2011) 209–218.

DOI: 10.1016/j.desal.2010.12.033

Google Scholar

[17] H.F. Haghshenas, A. Khodaii, M. Khedmati, S. Tapkin, A mathematical model for predicting stripping potential of hot mix asphalt, Constr. Build. Mater. 75 (2015) 488–495.

DOI: 10.1016/j.conbuildmat.2014.11.041

Google Scholar

[18] M. Khedmati, A. Khodaii, H.F. Haghshenas, A study on moisture susceptibility of stone matrix warm mix asphalt, Constr. Build. Mater. 144 (2017) 42–49.

DOI: 10.1016/j.conbuildmat.2017.03.121

Google Scholar

[19] A. Witek-Krowiak, K. Chojnacka, D. Podstawczyk, A. Dawiec, K. Pokomeda, Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process, Bioresour. Technol. 160 (2014) 150–160.

DOI: 10.1016/j.biortech.2014.01.021

Google Scholar

[20] L. Zhang, Y. Zeng, Z. Cheng, Removal of heavy metal ions using chitosan and modified chitosan: a review, J. Mol. Liq. 214 (2016) 175–191.

DOI: 10.1016/j.molliq.2015.12.013

Google Scholar