Investigation of Diffraction of Electromagnetic Microwaves on Explosive Materials

Article Preview

Abstract:

A mathematical model of diffraction of electromagnetic microwaves on explosive materials with different physical and electromagnetic parameters has been developed. The model was constructed by solving Maxwell's equation for two surfaces separating three dielectric materials, in particular air, explosive material, and the substrate on which the explosive material is located. Different types of soil and wood are considered as the substrate material, which meets the conditions for demining large areas of the locality. The results of the numerical calculation showed that 67 % to 92 % of the energy of electromagnetic radiation is concentrated in the explosive material. In this case, trinitrotoluene, which is placed on dry sand, has the highest absorption rates, while wet wood, due to its high coefficient of dielectric permittivity, successfully transmits electromagnetic microwaves through its surface. The obtained models and numerical results are considered as theoretical basis for predicting the effectiveness of remote methods of detection and disposal of explosive materials using electromagnetic microwaves. The obtained results showed that this method will be least effective for explosive materials placed on wet wood. In this case, the lowest reflection coefficient is observed that complicates the search for explosive material and the lowest absorption coefficient that complicates the artificial detonation of explosive material due to its heating under the influence of electromagnetic microwaves.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-102

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.W. Dorn, Eliminating Hidden Killers: How Can Technology Help Humanitarian Demining? Stability: International Journal of Security and Development. 8(1) (2019) 1–17.

DOI: 10.5334/sta.743

Google Scholar

[2] M. Prem, M.E. Purroy, J.F. Vargas, Landmines: the Local Effects of Demining, TSE Working Paper, 1305 (2022) 22.

DOI: 10.31235/osf.io/3jzk6

Google Scholar

[3] S. Ragimov, V. Sobyna, S. Vambol, V. Vambol, A. Feshchenko, A. Zakora, E. Strejekurov, V. Shalomov, Physical modelling of changes in the energy impact on a worker taking into account high-temperature radiation. Journal of Achievements in Materials and Manufacturing Engineering. 91(1) (2018) 27–33.

DOI: 10.5604/01.3001.0012.9654

Google Scholar

[4] V. Andronov, B. Pospelov, E. Rybka, Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies. 2/9(86) (2017) 32–37.

DOI: 10.15587/1729-4061.2017.96694

Google Scholar

[5] B. Pospelov, E. Rybka, V. Togobytska, R. Meleshchenko, Yu. Danchenko, Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies. 4/10 (100) (2019) 22–29.

DOI: 10.15587/1729-4061.2019.176579

Google Scholar

[6] B. Pospelov, E. Rybka, R. Meleshchenko, S. Gornostal, S. Shcherbak, Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies. 6/10 (90) (2017) 50–56.

DOI: 10.15587/1729-4061.2017.117789

Google Scholar

[7] A. Melnichenko, M. Kustov, O. Basmanov, O. Karatieieva, N. Shevchuk, Devising a procedure to forecast the level of chemical damage to the atmosphereduring active deposition of dangerous gases. Eastern-European Journal of Enterprise Technologies. 1(10-115) (2022) 31–40.

DOI: 10.15587/1729-4061.2022.251675

Google Scholar

[8] B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, N. Maksymenko, R. Meleshchenko, Yu. Bezuhla, I. Hrachova, R. Nesterenko, А. Shumilova, Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise. 4/10 (106) (2020) 37–44.

DOI: 10.15587/1729-4061.2020.210059

Google Scholar

[9] V. Tiutiunyk, H. Ivanets, I. Tolkunov, E. Stetsyuk, System approach for readiness assessment units of civil defense to actions at emergency situations. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 1(163) (2018) 99–105

DOI: 10.29202/nvngu/2018-1/7

Google Scholar

[10] O. Popov, A. Iatsyshyn, V. Kovach, V. Artemchuk, D. Taraduda, V. Sobyna, D. Sokolov, M. Dement, V. Hurkovskyi, K. Nikolaiev, T. Yatsyshyn, D. Dimitriieva, Physical features of pollutants spread in the air during the emergency at NPPs. Nuclear and Radiation Safety. 4(84) (2019) 88–98.

DOI: 10.32918/nrs.2019.4(84).11

Google Scholar

[11] O. Kulakov, A. Katunin, M. Kustov, E. Slepuzhnikov, S. Rudakov, Investigation of Reliability of Emergency Shutdown of Consumers in Electric Power Systems of Explosive Hazardous Zones. 2022 IEEE 3rd KhPI Week on Advanced Technology (Conference Proceedings). (2022) 173–177.

DOI: 10.1109/khpiweek57572.2022.9916418

Google Scholar

[12] B. Pospelov, V. Andronov, E. Rybka, V. Popov, A. Romin, Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies. 1/10 (91) (2018) 50–55.

DOI: 10.15587/1729-4061.2018.122419

Google Scholar

[13] O. Popov, D. Taraduda, V. Sobyna, D. Sokolov, M. Dement, A. Pomaza-Ponomarenko, Emergencies at Potentially Dangerous Objects Causing Atmosphere Pollution: Peculiarities of Chemically Hazardous Substances Migration, Systems. Decision and Control in Energy. 298 (2020) 151–163.

DOI: 10.1007/978-3-030-48583-2_10

Google Scholar

[14] O. Rybalova, S. Artemiev, M. Sarapina, B. Tsymbal, A. Bakhareva, O. Shestopalov, O. Filenko, Development of methods for estimating the environmental risk of degradation of the surface water state. Eastern-European Journal of Enterprise Technologies. 2/10 (92) (2018) 4–17.

DOI: 10.15587/1729-4061.2018.127829

Google Scholar

[15] O. Popov, A. Iatsyshyn, V. Kovach, V. Artemchuk, D. Taraduda, V. Sobyna, D. Sokolov, M. Dement, T. Yatsyshyn, Conceptual approaches for development of informational and analytical expert system for assessing the NPP impact on the environment. Nuclear and Radiation Safety. 3 (79) (2018) 56–65.

DOI: 10.32918/nrs.2018.3(79).09

Google Scholar

[16] R.W. Armstrong, W.L. Elban, Materials science and technology aspects of energetic (explosive) materials, Materials Science and Technology. Energetic (explosive) materials and deformation at high strain rates. 22(4) (2006) 381–395.

DOI: 10.1179/174328406x84049

Google Scholar

[17] R. Kovalenko, A. Kalynovskyi, S. Nazarenko, B. Kryvoshei, E. Grinchenko, Z. Demydov, M. Mordvyntsev, R. Kaidalov, Development of a method of completing emergency rescue units with emergency vehicles. Eastern-European Journal of Enterprise Technologies. 4/3 (100) (2019) 54–62.

DOI: 10.15587/1729-4061.2019.175110

Google Scholar

[18] D.P. Williams, V. Myers, M.S. Silvious, Mine Classification With Imbalanced Data. IEEE Geoscience and Remote Sensing Letters. 6(3) (2009) 528–532.

DOI: 10.1109/lgrs.2009.2021964

Google Scholar

[19] Vl. Barannik, S. Sidchenko, N. Barannik, Val. Barannik, Development of the method for encoding service data in cryptocompression image representation systems, Eastern-European Journal of Enterprise Technologies, 3/9 (111) (2021) 103–115.

DOI: 10.15587/1729-4061.2021.235521

Google Scholar

[20] N. Palka, M. Szala, E. Czerwinska, Characterization of prospective explosive materials using terahertz time-domain spectroscopy. Applied Optics. 55/17 (2016) 4575–4583.

DOI: 10.1364/ao.55.004575

Google Scholar

[21] C. Yilmaz, H.T. Kahraman, S. Söyler, Passive mine detection and classification method based on hybrid model. IEEE Access. 6 (2018) 47870–47888.

DOI: 10.1109/access.2018.2866538

Google Scholar

[22] T.J. Janssen, Explosive materials: Classification, composition and properties. Nova Science Publishers. (2011) 1–292.

Google Scholar

[23] L.S. Yoo, J.H. Lee, Y.K. Lee, S.K. Jung, Y. Choi, Application of a drone magnetometer system to military mine detection in the demilitarized zone. Sensors. 21(9) (2021) 3175.

DOI: 10.3390/s21093175

Google Scholar

[24] M.V. Kustov, O.М. Kulakov, A.A. Karpov, O.Ie. Basmanov, Yu.V., Mykhailovska, Model dyfraktsii elektromahnitnykh khvyl na vybukhonebezpechnykh predmetakh. Problemy nadzvychainykh sytuatsii. 2(38) (2023) 39–52.

Google Scholar

[25] M. Kustov, A. Karpov, S. Harbuz, A. Savchenko, Effect of Physical and Chemical Properties of Explosive Materials on the Conditions of their Use. Key Engineering Materials. 952 (2023) 143–154.

DOI: 10.4028/p-0h8ung

Google Scholar

[26] G.N. Shabanova, A.N. Korohodska, M.V. Kustov, M.Y. Ivashchenko, D.V. Taraduda, Barium-containing cement and concrete for protection against electromagnetic radiation. Functional Materialsthis. 28(2) (2021) 323–326.

Google Scholar

[27] Yu. Otrosh, O. Semkiv, E. Rybka, A. Kovalov, About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering. 708 (2019) 012065.

DOI: 10.1088/1757-899x/708/1/012065

Google Scholar

[28] M.V. Kustov, V.D. Kalugin, V.V. Deineka, E.D. Slepuzhnikov, D.M. Deyneka, Radioprotective cement for long-term storage of nuclear waste. Voprosy Khimii i Khimicheskoi Tekhnologii. 2 (2020) 73–81.

DOI: 10.32434/0321-4095-2020-129-2-73-81

Google Scholar

[29] Microwave power engineering: edited by E.C. Okress (in 3 vol.), Academic press, New York and London, 1968.

Google Scholar

[30] L.D. Landau, E.M. Lifshitz, Electrodynamics of continuous media: translated by J.B. Skyes and J.S. Bell, Addison-Wesley, Boston, 1960.

Google Scholar