[1]
Bartlett FM and MacGregor JG. Effect of core diameter on concrete core strengths. ACI Materials Journal. 1994, 91(4), pp.339-348.
DOI: 10.14359/4160
Google Scholar
[2]
ACI Committee 214.4-03, Guide for Obtaining Cores and Interpreting Compressive Strength Results American Concrete Institute, Farmington Hills, Mich., 2003, 16pp [2013].
Google Scholar
[3]
Ahmed E. A. Does Core Size Affect Strength Testing? Concrete International. Vol. 21, No. 8, August 1999, p.35–39.
Google Scholar
[4]
NF EN 12390-3, "Testing hardened concrete - Part 3: compressive strength for test specimens," June, 2019.
Google Scholar
[5]
NA 17004, norme algérienne. : Evaluation de la résistance à la compression sur site des structures et les éléments préfabriqués en béton. 2008.
Google Scholar
[6]
Khoury S.; Aliabdo A.; A-H.; Ghazy A.: Reliability of core test – Critical assessment and proposed new approach. Alexandria Engineering Journal. Vol. 53, pp.169-184. (2014)
DOI: 10.1016/j.aej.2013.12.005
Google Scholar
[7]
Jiahai L., Dingyong Y., Guofu W. and Xiaopeng Q. Size effect of core samples on bridge concrete strength with drilled core method. International Conference on Intelligent Transportation, Big Data & Smart City. 2015.
DOI: 10.1109/icitbs.2015.183
Google Scholar
[8]
Carroll A. C.; Grubbs A. R; Schindler A. K.; Barnes R. W.: Effect of core geometry and size on concrete compressive strength. Alabama Department of transportation. Highway Research Center. July 2016.
Google Scholar
[9]
Kashyzadeh K. R.; Amiri N.; Ghorbani S.; Kambiz Souri K.: Prediction of Concrete Compressive Strength Using aBack-Propagation Neural Network Optimized by a GeneticAlgorithm and Response Surface Analysis Considering theAppearance of Aggregates and Curing Conditions. Buildings. 2022, 12, 438.
DOI: 10.3390/buildings12040438
Google Scholar
[10]
Quagliarini E.; Clementi F.; Maracchini G.; Monni F.: Experimental assessment of concrete compressive strength in old existing RC buildings: A possible way to reduce the dispersion of DT results. Journal of Building Engineering. Volume 8, December 2016, Pages 162-171.
DOI: 10.1016/j.jobe.2016.10.008
Google Scholar
[11]
NF EN 12390-2 Standard, "Testing hardened concrete-Part 2: making and curing specimens for strength tests," June, 2019.
Google Scholar
[12]
NF EN 12390-3, "Testing hardened concrete - Part 3 : compressive strength for test specimens," June, 2019.
Google Scholar
[13]
NF EN 13791 Standard, "Assessment of in-situ compressive strength in structures and precast concrete components," August, 2019.
DOI: 10.3403/30201030
Google Scholar
[14]
Benidir A.; Debbaakh S.; Chaibedrda. S.: On the Assessment of Actual Compressive Strength of Concrete in Reinforced Columns: Influence of Core Diameter and Slenderness Ratio. SSP - Journal of Civil Engineering. Vol. 18, Issue 1, 2023.
DOI: 10.2478/sspjce-2023-0009
Google Scholar
[15]
ASTM C42/C 42M. Standard test method of obtaining and testing drilled cores and sawed beams of concrete. Annual Book of ASTM Standards, Vol. 04.02, USA (2004).
DOI: 10.1520/c0042_c0042m-12
Google Scholar
[16]
Benidir, A.; Mahdad M. ; Brara A. Aggregate size and lateral dimension effects on core compressive strength of concrete, Proc. IRF2018 6th Int. Conf. Integrity-Reliability-Failure, no. July, p.479–486, 2018.
Google Scholar
[17]
NA 17004, norme algérienne" Evaluation de la résistance à la compression sur site des structures et les éléments préfabriqués en béton," 2008.
Google Scholar
[18]
ACI Committee 214.4R-10. Guide for obtaining cores and interpreting compressive strength results. American Concrete Institute 38800 Country Club Drive Farmington Hills, MI 48331 U.S.A. 2010.
Google Scholar
[19]
Concrete Society, Concrete Core Testing for Strength, Technical Report No. 11, The Concrete Society, London, 1987, 44pp.
Google Scholar
[20]
Dolce M., Masi A., Ferrini M. Estimation of the actual in-place concrete strength in assessing existing RC structures, The Second International fib Congress, June 5–8, 2006, Naples, Italy, 2006.
Google Scholar