Using Biomass of Microalgae as a Potential Biofuel

Article Preview

Abstract:

The results of the study of the calorific value of the fuel obtained from the biomass of microalgae Chlorella vulgaris, obtained as a result of the absorption of greenhouse gases, by the method of complex thermogravimetric and differential thermal analyzes are presented. The calorific value of fuel samples obtained from biomass grown by absorbing pure carbon dioxide and biomass grown by absorbing a mixture of carbon dioxide, sulfur dioxide, and nitrogen oxides was determined. Combustion of fuel samples obtained as a result of absorption of greenhouse gases is accompanied by a higher exothermic effect by 1.7% compared to the standard obtained from pure carbon dioxide. According to research results, the calorific value of this fuel exceeds by 17% the calorific value of aspen, which is an alternative source of energy in Europe, and is commensurate with the calorific value of selectively bred energy willow.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-56

Citation:

Online since:

April 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dyachok V., Huhlych S., Katysheva V., Mandryk S. 2021. About the Optimal Ratio Inhibitor and Activators of Carbon Dioxide Sorption Process by Using Chlorophyll-synthesizing Chlorella microalgae/ Journal of Ecological Engineering , 22(5), 26–31

DOI: 10.12911/22998993/135900

Google Scholar

[2] Dyachok V., Huhlych S., Katysheva V.V., Mandryk S.T. 2017. Absorption of carbon dioxide from a mixture of air with sulfur dioxide (in Ukrainian). Naukovi Pratsi Onakht, 81(1), 59-65.

Google Scholar

[3] Dyachok V.V., Mandryk S.T., Huhlych S.I., Slyvka M.M. 2020. Study on the impact of activators in the presence of an inhibitor on the dynamics of carbon dioxide absorption by chlorophyll-synthesizing microalgae. Journal of Ecological Engineering, 21(5), 189-196.

DOI: 10.12911/22998993/122674

Google Scholar

[4] E.C. Camargo, A.T. Lombardi, Effect of cement industry flue gas simulation on the physiology and photosynthetic performance of Chlorella sorokiniana, J. Appl. Phycol. 30 (2) (2018) 861–871.

DOI: 10.1007/s10811-017-1291-3

Google Scholar

[5] J.A. Lara-Gil, C. Sen ́es-Guerrero, A. Pacheco, Cement flue gas as a potential source of nutrients during CO2 mitigation by microalgae, Algal Res. 17 (2016) 285–292.

DOI: 10.1016/j.algal.2016.05.017

Google Scholar

[6] A. Aslam, S.R. Thomas-Hall, T.A. Mughal, P.M. Schenk, Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas, Bioresour.Technol. 233 (2017) 271–283.

DOI: 10.1016/j.biortech.2017.02.111

Google Scholar

[7] J. Cheng, Y. Huang, H. Lu, R. Huang, J. Zhou, K. Cen, The oxidation product (NO2 ) of NO pollutant in flue gas used as a nitrogen source to improve microalgal biomass production and CO2 fixation, RSC Adv. 4 (79) (2014) 42147–42154.

DOI: 10.1039/C4RA05491A

Google Scholar

[8] S. Nagappan, P.C. Tsai, S. Devendran, V. Alagarsamy, V.K. Ponnusamy, Enhancement of biofuel production by microalgae using cement flue gas as substrate, Environ. Sci. Pollut. Res. 27 (15) (2020) 17571–17586.

DOI: 10.1007/s11356-019-06425-y

Google Scholar

[9] C. Song, Y. Qiu, S. Li, Z. Liu, G. Chen, L. Sun, K. Wang, Y. Kitamura, A novel concept of bicarbonate-carbon utilization via an absorption-microalgae hybrid process assisted with nutrient recycling from soybean wastewater, J. Clean. Prod. 237 (2019) 117864.

DOI: 10.1016/j.jclepro.2019.117864

Google Scholar

[10] X. Hu, J. Zhou, G. Liu, B. Gui, Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater, J. Environ. Sci. (China). 46 (2016) 83–91.

DOI: 10.1016/j.jes.2015.08.030

Google Scholar

[11] A.K. Vuppaladadiyam, J.G. Yao, N. Florin, A. George, X. Wang, L. Labeeuw, Y. Jiang, R.W. Davis, A. Abbas, P. Ralph, P.S. Fennell, M. Zhao, Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization, ChemSusChem. 11 (2) (2018) 334–355.

DOI: 10.1002/cssc.201701611

Google Scholar

[12] Y. Guo, Z. Yuan, J. Xu, Z. Wang, T. Yuan, W. Zhou, J. Xu, C. Liang, H. Xu, S. Liu, Metabolic acclimation mechanism in microalgae developed for CO2 capture from industrial flue gas, Algal Res. 26 (2017) 225–233.

DOI: 10.1016/j.algal.2017.07.029

Google Scholar

[13] D. Cheng, X. Li, Y. Yuan, C. Yang, T. Tang, Q. Zhao, Y. Sun, Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas, Sci. Total Environ. 650 (2019) 2931–2938.

DOI: 10.1016/j.scitotenv.2018.10.070

Google Scholar

[14] Kazamia, D.C. Aldridge, A.G. Smith, Synthetic ecology - A way forward for sustainable algal biofuel production? J. Biotechnol. 162 (1) (2012) 163–169.

DOI: 10.1016/j.jbiotec.2012.03.022

Google Scholar

[15] E. Kazamia, A.S. Riseley, C.J. Howe, A.G. Smith, An engineered community approach for industrial cultivation of microalgae, Ind. Biotechnol. 10 (3) (2014) 184–190.

DOI: 10.1089/ind.2013.0041

Google Scholar

[16] A.P. Peter, K.S. Khoo, K.W. Chew, T.C. Ling, S.-H. Ho, J.-S. Chang, P.L. Show, Microalgae for biofuels, wastewater treatment and environmental monitoring, Environ. Chem. Lett. (2021) 1–14

DOI: 10.1007/s10311-021-01219-6

Google Scholar

[17] O. Bodnar. Biotechnological prospects for the use of microalgae: main directions (review). Scientific notes of Ternopil National Pedagogical University named after Volodymyr Hnatyuk. Ser. Biology. Ternopil biological readings - Ternopil Bioscience.(2017) 138–146, http://dspace.tnpu.edu.ua/bitstream/123456789/8030/1/

DOI: 10.30970/sbi.1101.522

Google Scholar

[18] O.P. Skoruk, D.M. Tokarchuk, V. M. Vsemirnova. Prospects for third-generation biofuel production/-Collection of academic works of VNAU. Series: Economic Sciences. 1 (48) Vinnytsia, (2021). - 171-176, http://econjournal.vsau.org/files/pdfa/284.

Google Scholar

[19] Yalechko V., Kochubey V, Hnatyshyn Y., Dzyadevych B. and. Zaikov G. 2015. Investigation of Thermal Power Characteristics of Wood Pulp. The Chemistry and Physics of Engineering Materials – Two Volume Set.: Modern Analytical Methodologies. Apple Academic Press, USA. 1, 171-178.

DOI: 10.1201/b18708-17

Google Scholar