[1]
Dyachok V., Huhlych S., Katysheva V., Mandryk S. 2021. About the Optimal Ratio Inhibitor and Activators of Carbon Dioxide Sorption Process by Using Chlorophyll-synthesizing Chlorella microalgae/ Journal of Ecological Engineering , 22(5), 26–31
DOI: 10.12911/22998993/135900
Google Scholar
[2]
Dyachok V., Huhlych S., Katysheva V.V., Mandryk S.T. 2017. Absorption of carbon dioxide from a mixture of air with sulfur dioxide (in Ukrainian). Naukovi Pratsi Onakht, 81(1), 59-65.
Google Scholar
[3]
Dyachok V.V., Mandryk S.T., Huhlych S.I., Slyvka M.M. 2020. Study on the impact of activators in the presence of an inhibitor on the dynamics of carbon dioxide absorption by chlorophyll-synthesizing microalgae. Journal of Ecological Engineering, 21(5), 189-196.
DOI: 10.12911/22998993/122674
Google Scholar
[4]
E.C. Camargo, A.T. Lombardi, Effect of cement industry flue gas simulation on the physiology and photosynthetic performance of Chlorella sorokiniana, J. Appl. Phycol. 30 (2) (2018) 861–871.
DOI: 10.1007/s10811-017-1291-3
Google Scholar
[5]
J.A. Lara-Gil, C. Sen ́es-Guerrero, A. Pacheco, Cement flue gas as a potential source of nutrients during CO2 mitigation by microalgae, Algal Res. 17 (2016) 285–292.
DOI: 10.1016/j.algal.2016.05.017
Google Scholar
[6]
A. Aslam, S.R. Thomas-Hall, T.A. Mughal, P.M. Schenk, Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas, Bioresour.Technol. 233 (2017) 271–283.
DOI: 10.1016/j.biortech.2017.02.111
Google Scholar
[7]
J. Cheng, Y. Huang, H. Lu, R. Huang, J. Zhou, K. Cen, The oxidation product (NO2 ) of NO pollutant in flue gas used as a nitrogen source to improve microalgal biomass production and CO2 fixation, RSC Adv. 4 (79) (2014) 42147–42154.
DOI: 10.1039/C4RA05491A
Google Scholar
[8]
S. Nagappan, P.C. Tsai, S. Devendran, V. Alagarsamy, V.K. Ponnusamy, Enhancement of biofuel production by microalgae using cement flue gas as substrate, Environ. Sci. Pollut. Res. 27 (15) (2020) 17571–17586.
DOI: 10.1007/s11356-019-06425-y
Google Scholar
[9]
C. Song, Y. Qiu, S. Li, Z. Liu, G. Chen, L. Sun, K. Wang, Y. Kitamura, A novel concept of bicarbonate-carbon utilization via an absorption-microalgae hybrid process assisted with nutrient recycling from soybean wastewater, J. Clean. Prod. 237 (2019) 117864.
DOI: 10.1016/j.jclepro.2019.117864
Google Scholar
[10]
X. Hu, J. Zhou, G. Liu, B. Gui, Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater, J. Environ. Sci. (China). 46 (2016) 83–91.
DOI: 10.1016/j.jes.2015.08.030
Google Scholar
[11]
A.K. Vuppaladadiyam, J.G. Yao, N. Florin, A. George, X. Wang, L. Labeeuw, Y. Jiang, R.W. Davis, A. Abbas, P. Ralph, P.S. Fennell, M. Zhao, Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization, ChemSusChem. 11 (2) (2018) 334–355.
DOI: 10.1002/cssc.201701611
Google Scholar
[12]
Y. Guo, Z. Yuan, J. Xu, Z. Wang, T. Yuan, W. Zhou, J. Xu, C. Liang, H. Xu, S. Liu, Metabolic acclimation mechanism in microalgae developed for CO2 capture from industrial flue gas, Algal Res. 26 (2017) 225–233.
DOI: 10.1016/j.algal.2017.07.029
Google Scholar
[13]
D. Cheng, X. Li, Y. Yuan, C. Yang, T. Tang, Q. Zhao, Y. Sun, Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas, Sci. Total Environ. 650 (2019) 2931–2938.
DOI: 10.1016/j.scitotenv.2018.10.070
Google Scholar
[14]
Kazamia, D.C. Aldridge, A.G. Smith, Synthetic ecology - A way forward for sustainable algal biofuel production? J. Biotechnol. 162 (1) (2012) 163–169.
DOI: 10.1016/j.jbiotec.2012.03.022
Google Scholar
[15]
E. Kazamia, A.S. Riseley, C.J. Howe, A.G. Smith, An engineered community approach for industrial cultivation of microalgae, Ind. Biotechnol. 10 (3) (2014) 184–190.
DOI: 10.1089/ind.2013.0041
Google Scholar
[16]
A.P. Peter, K.S. Khoo, K.W. Chew, T.C. Ling, S.-H. Ho, J.-S. Chang, P.L. Show, Microalgae for biofuels, wastewater treatment and environmental monitoring, Environ. Chem. Lett. (2021) 1–14
DOI: 10.1007/s10311-021-01219-6
Google Scholar
[17]
O. Bodnar. Biotechnological prospects for the use of microalgae: main directions (review). Scientific notes of Ternopil National Pedagogical University named after Volodymyr Hnatyuk. Ser. Biology. Ternopil biological readings - Ternopil Bioscience.(2017) 138–146, http://dspace.tnpu.edu.ua/bitstream/123456789/8030/1/
DOI: 10.30970/sbi.1101.522
Google Scholar
[18]
O.P. Skoruk, D.M. Tokarchuk, V. M. Vsemirnova. Prospects for third-generation biofuel production/-Collection of academic works of VNAU. Series: Economic Sciences. 1 (48) Vinnytsia, (2021). - 171-176, http://econjournal.vsau.org/files/pdfa/284.
Google Scholar
[19]
Yalechko V., Kochubey V, Hnatyshyn Y., Dzyadevych B. and. Zaikov G. 2015. Investigation of Thermal Power Characteristics of Wood Pulp. The Chemistry and Physics of Engineering Materials – Two Volume Set.: Modern Analytical Methodologies. Apple Academic Press, USA. 1, 171-178.
DOI: 10.1201/b18708-17
Google Scholar