Preliminary Research on the Thermal Field in Concrete for Microwave Heating Application

Article Preview

Abstract:

Magnesium along with its alloy has garnered significant attention for potential utilization in biomedical applications, owing to its biodegradable and biocompatible characteristics. This paper aims to present preliminary research on the microwave heating of a concrete crucible designed to ensure the proper temperature for the sintering of magnesium alloy. Due to the reflection coefficient of microwaves by the magnesium alloy, the utilization of a microwave susceptor becomes imperative for effective heating. The research primarily focuses on modeling the temperature distribution within the concrete crucible to ensure a consistent level of heat for the sintering process of the magnesium alloy. As a result of the modeling process, temperatures up to 298°C have been achieved across a broad range of microwave power inputs (600-1200 W).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-20

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.R. Bakhsheshi-Rad et al., Microstructure and bio-corrosion behavior of Mg–Zn and Mg–Zn–Ca alloys for biomedical applications, Materials and Corrosion, 65 (2014)1178-1187.

DOI: 10.1002/maco.201307588

Google Scholar

[2] Z.S. Seyedraoufi, S. Mirdamadi, Synthesis, microstructure and mechanical properties of porous Mg-Zn scaffolds, Journal of the Mechanical Behavior of Biomedical Materials, 21(0) (2013)1-8.

DOI: 10.1016/j.jmbbm.2013.01.023

Google Scholar

[3] Y.F. Zheng, X.N. Gu, F. Witte, Biodegradable metals, Materials Science and Engineering: R: Reports, 77 (2014) 1-34.

Google Scholar

[4] Z. Ting, W. Wen, L. Jia, W. Liqiang, T. Yujin, W. Kuaishe, A review on magnesium alloys for biomedical applications, Frontiers in Bioengineering and Biotechnology, (2022) 1-25.

Google Scholar

[5] S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications, Mater. Sci. Eng. C 68, (2016) 948–963.

DOI: 10.1016/j.msec.2016.06.020

Google Scholar

[6] S. Amukarimi, M. Mozafari, Biodegradable magnesium-based biomaterials: An overview of challenges and opportunities, MedComm 2, (2021)123–144.

DOI: 10.1002/mco2.59

Google Scholar

[7] A. Atrens, S. Johnston, Z. Shi, M. S. Dargusch, Viewpoint - understanding Mg corrosion in the body for biodegradable medical implants. Scr. Mat. 154, (2018) 92–100.

DOI: 10.1016/j.scriptamat.2018.05.021

Google Scholar

[8] L. H. C. Becerra, M. A. L. H. Rodríguez, H. E. Solís, R. L. Arroyo, A.T. Castro, Bio-inspired biomaterial Mg–Zn–Ca: A review of the main mechanical and biological properties of Mg-based alloys. Biomed. Phys. Eng. Express 6, (2020) 042001.

DOI: 10.1088/2057-1976/ab9426

Google Scholar

[9] M. Luosheng et al., Effect of sintering temperature on microstructures and mechanical properties of ZK60 magnesium alloys, Mater. Res. Express 9 (2022) 016514.

DOI: 10.1088/2053-1591/ac47c7

Google Scholar

[10] M. Knapek et al., Corrosion and mechanical properties of a novel biomedical WN43 magnesium alloy prepared by spark plasma sintering, Journal of Magnesium and Alloys 9 (2021) 853–65.

DOI: 10.1016/j.jma.2020.12.017

Google Scholar

[11] S. Yoon, J.-H. Kim, W.-T. Park, J. Kim, Analysis of Laser Sintering of Zirconia to Magnesium Alloy by Laser-Induced Plasma Spectroscopy, Nanoscience and Nanotechnology Letters, 10 (2018) 790-795

DOI: 10.1166/nnl.2018.2726

Google Scholar

[12] M. Wolff, T. Ebel, M. Dahms, Sintering of Magnesium, Advanced Engineering Materials 12 (2010) 829-836.

DOI: 10.1002/adem.201000038

Google Scholar

[13] Y. Galindez, E. Correa, A. A. Zuleta, F. Bolivar, F. Echeverría, Effects of Hot Isostatic Pressing on the Characteristics of PM Processed Mg-Based Alloys, Trans Indian Inst Met 75, (2022), 2099–2106.

DOI: 10.1007/s12666-022-02591-9

Google Scholar

[14] Padmavathi C., Upadhyaya A., Agrawal D., Microwave Assisted Sintering of Al-Cu-Mg-Si-Sn Alloy, Journal of Microwave Power and Electromagnetic Energy, 46:3 (2012) 115-127

DOI: 10.1080/08327823.2012.11689830

Google Scholar

[15] S. V. Savu, D. Tarnita, G. C. Benga, I. Dumitru, I. Stefan, N. Craciunoiu, A. B. Olei and I. D. Savu, Microwave Technology Using Low Energy Concentrated Beam for Processing of Solid Waste Materials from Rapana thomasiana Seashells, Energies, 14, 6780, (2021)

DOI: 10.3390/en14206780

Google Scholar

[16] S.V. Savu, C.D. Ghelsingher, I. Ștefan, N.A. Sirbu, D. Tarnita, D.Simion, I.D. Savu, I.G. Bucse, T. Tunescu, Microwave soldering of low-resistance conductive joints – technical and economic aspects, Materials, 16 (2023), 3311

DOI: 10.3390/ma16093311

Google Scholar

[17] A. Olei, R. Marin, I. Ștefan, S. V. Savu, G. Benga, A. David, D. Savu, Temperature distribution in monolithic ceramic substrate of selective catalytic reduction system activated with microwave for reducing pollutant emissions from combustion engines of inland ships, U.P.B. Sci. Bull., Series B, Vol. 84, (2022)

DOI: 10.3390/su14074156

Google Scholar

[18] R. C. Marin, A. B. Olei, I. Ștefan, I. D. Savu, C. Ghelsingher D., S. V. Savu, A. David, Research on microwave heating conditions of cordierite cylindrical shape for after treatment applications, Acta Technica Napocensis, Series: Applied Mathematics, Mechanics, and Engineering, 64 (2021) 377-386

Google Scholar

[19] C. D. Ghelsingher, R. C. Marin, I. Stefan, N.-A. Sirbu, I. D. Savu, A. David, S. V. Savu, A. Olei, Simulation of Thermal Field in Eutectic Microwave Bonding for Electrical Connection of Photovoltaic Cells, Advanced Materials Research, Vol. 1172, (2022) 51-56

DOI: 10.4028/p-4t08jp

Google Scholar

[20] A. Dhyah, P. L. Franciska; E. Aprilia; K. Ika, Study of sintering on Mg-Zn-Ca alloy system, AIP Conf. Proc. 1964 (2018) 020029-1 – 020029-5

DOI: 10.1063/1.5038311

Google Scholar