[1]
H.R. Bakhsheshi-Rad et al., Microstructure and bio-corrosion behavior of Mg–Zn and Mg–Zn–Ca alloys for biomedical applications, Materials and Corrosion, 65 (2014)1178-1187.
DOI: 10.1002/maco.201307588
Google Scholar
[2]
Z.S. Seyedraoufi, S. Mirdamadi, Synthesis, microstructure and mechanical properties of porous Mg-Zn scaffolds, Journal of the Mechanical Behavior of Biomedical Materials, 21(0) (2013)1-8.
DOI: 10.1016/j.jmbbm.2013.01.023
Google Scholar
[3]
Y.F. Zheng, X.N. Gu, F. Witte, Biodegradable metals, Materials Science and Engineering: R: Reports, 77 (2014) 1-34.
Google Scholar
[4]
Z. Ting, W. Wen, L. Jia, W. Liqiang, T. Yujin, W. Kuaishe, A review on magnesium alloys for biomedical applications, Frontiers in Bioengineering and Biotechnology, (2022) 1-25.
Google Scholar
[5]
S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications, Mater. Sci. Eng. C 68, (2016) 948–963.
DOI: 10.1016/j.msec.2016.06.020
Google Scholar
[6]
S. Amukarimi, M. Mozafari, Biodegradable magnesium-based biomaterials: An overview of challenges and opportunities, MedComm 2, (2021)123–144.
DOI: 10.1002/mco2.59
Google Scholar
[7]
A. Atrens, S. Johnston, Z. Shi, M. S. Dargusch, Viewpoint - understanding Mg corrosion in the body for biodegradable medical implants. Scr. Mat. 154, (2018) 92–100.
DOI: 10.1016/j.scriptamat.2018.05.021
Google Scholar
[8]
L. H. C. Becerra, M. A. L. H. Rodríguez, H. E. Solís, R. L. Arroyo, A.T. Castro, Bio-inspired biomaterial Mg–Zn–Ca: A review of the main mechanical and biological properties of Mg-based alloys. Biomed. Phys. Eng. Express 6, (2020) 042001.
DOI: 10.1088/2057-1976/ab9426
Google Scholar
[9]
M. Luosheng et al., Effect of sintering temperature on microstructures and mechanical properties of ZK60 magnesium alloys, Mater. Res. Express 9 (2022) 016514.
DOI: 10.1088/2053-1591/ac47c7
Google Scholar
[10]
M. Knapek et al., Corrosion and mechanical properties of a novel biomedical WN43 magnesium alloy prepared by spark plasma sintering, Journal of Magnesium and Alloys 9 (2021) 853–65.
DOI: 10.1016/j.jma.2020.12.017
Google Scholar
[11]
S. Yoon, J.-H. Kim, W.-T. Park, J. Kim, Analysis of Laser Sintering of Zirconia to Magnesium Alloy by Laser-Induced Plasma Spectroscopy, Nanoscience and Nanotechnology Letters, 10 (2018) 790-795
DOI: 10.1166/nnl.2018.2726
Google Scholar
[12]
M. Wolff, T. Ebel, M. Dahms, Sintering of Magnesium, Advanced Engineering Materials 12 (2010) 829-836.
DOI: 10.1002/adem.201000038
Google Scholar
[13]
Y. Galindez, E. Correa, A. A. Zuleta, F. Bolivar, F. Echeverría, Effects of Hot Isostatic Pressing on the Characteristics of PM Processed Mg-Based Alloys, Trans Indian Inst Met 75, (2022), 2099–2106.
DOI: 10.1007/s12666-022-02591-9
Google Scholar
[14]
Padmavathi C., Upadhyaya A., Agrawal D., Microwave Assisted Sintering of Al-Cu-Mg-Si-Sn Alloy, Journal of Microwave Power and Electromagnetic Energy, 46:3 (2012) 115-127
DOI: 10.1080/08327823.2012.11689830
Google Scholar
[15]
S. V. Savu, D. Tarnita, G. C. Benga, I. Dumitru, I. Stefan, N. Craciunoiu, A. B. Olei and I. D. Savu, Microwave Technology Using Low Energy Concentrated Beam for Processing of Solid Waste Materials from Rapana thomasiana Seashells, Energies, 14, 6780, (2021)
DOI: 10.3390/en14206780
Google Scholar
[16]
S.V. Savu, C.D. Ghelsingher, I. Ștefan, N.A. Sirbu, D. Tarnita, D.Simion, I.D. Savu, I.G. Bucse, T. Tunescu, Microwave soldering of low-resistance conductive joints – technical and economic aspects, Materials, 16 (2023), 3311
DOI: 10.3390/ma16093311
Google Scholar
[17]
A. Olei, R. Marin, I. Ștefan, S. V. Savu, G. Benga, A. David, D. Savu, Temperature distribution in monolithic ceramic substrate of selective catalytic reduction system activated with microwave for reducing pollutant emissions from combustion engines of inland ships, U.P.B. Sci. Bull., Series B, Vol. 84, (2022)
DOI: 10.3390/su14074156
Google Scholar
[18]
R. C. Marin, A. B. Olei, I. Ștefan, I. D. Savu, C. Ghelsingher D., S. V. Savu, A. David, Research on microwave heating conditions of cordierite cylindrical shape for after treatment applications, Acta Technica Napocensis, Series: Applied Mathematics, Mechanics, and Engineering, 64 (2021) 377-386
Google Scholar
[19]
C. D. Ghelsingher, R. C. Marin, I. Stefan, N.-A. Sirbu, I. D. Savu, A. David, S. V. Savu, A. Olei, Simulation of Thermal Field in Eutectic Microwave Bonding for Electrical Connection of Photovoltaic Cells, Advanced Materials Research, Vol. 1172, (2022) 51-56
DOI: 10.4028/p-4t08jp
Google Scholar
[20]
A. Dhyah, P. L. Franciska; E. Aprilia; K. Ika, Study of sintering on Mg-Zn-Ca alloy system, AIP Conf. Proc. 1964 (2018) 020029-1 – 020029-5
DOI: 10.1063/1.5038311
Google Scholar