[1]
J. Zhang, W. Jia, X. Peng, X. Lu, J. Li, and S. Jiang, "Buckling analysis and structural optimization of multiple-material omega stiffened composite panel," Mech. Adv. Mater. Struct., vol. 0, no. 0, p.1–17, 2024.
DOI: 10.1080/15376494.2024.2339540
Google Scholar
[2]
J. Hutchinson and W. Koiter, "Postbuckling theory," Appl. Mech. Rev, vol. 23, no. 12, p.1353–1366, 1970.
Google Scholar
[3]
C. Bisagni, "Buckling and postbuckling tests on stiffened composite panels and shells," Buckling Postbuckling Struct. Exp. Anal. Numer. Stud., p.39–64, 2008.
DOI: 10.1142/9781848162303_0002
Google Scholar
[4]
B. G. Falzon, "Mode-jumping in postbuckling stiffened composite panels," Buckling Postbuckling Struct. Exp. Anal. Numer. Stud., p.65–98, 2008.
DOI: 10.1142/9781848162303_0003
Google Scholar
[5]
B.G.P.K.H. X-Y Ni, "Buckling and Post-Buckling of Isotropic and Composite Stiffened Panels: A Review on Analysis and Experiment," Int. J. Marit. Engineeing, vol. 157, p.9–30, 2015.
DOI: 10.3940/rina.ijme.2015.a1.300
Google Scholar
[6]
M. Lillico, R. Butler, G. W. Hunt, A. Watson, and D. Kennedy, "Postbuckling of stiffened panels using strut, strip, and finite element methods," AIAA J., vol. 41, no. 6, p.1172–1179, 2003.
DOI: 10.2514/2.2061
Google Scholar
[7]
W. C. Xie and A. Ibrahim, "Buckling mode localization in rib-stiffened plates with misplaced stiffeners - a finite strip approach," Chaos, solitons and fractals, vol. 11, no. 10, p.1543–1558, 2000.
DOI: 10.1016/S0960-0779(99)00077-6
Google Scholar
[8]
S. Piculin, F. Sinur, and P. Može, "04.10: Analysis of stiffened curved panels in compression: A preliminary numerical study for experimental tests," Ce/Papers, vol. 1, no. 2–3, p.898–907, 2017.
DOI: 10.1002/cepa.130
Google Scholar
[9]
K.L. Tran, C. Douthe, K. Sab, J. Dallot, and L. Davaine, "Buckling of stiffened curved panels under uniform axial compression," J. Constr. Steel Res., vol. 103, p.140–147, 2014.
DOI: 10.1016/j.jcsr.2014.07.004
Google Scholar
[10]
B. Hemanth, N. C. M. Babu, H. G. Shivakumar, and S. Srikari, "Design and analysis of grid stiffened fuselage panel with curved stiffeners," AIP Conf. Proc., vol. 1943, 2018.
DOI: 10.1063/1.5029582
Google Scholar
[11]
S. Bin Rayhan and M. M. Rahman, "Modeling elastic properties of unidirectional composite materials using ansys material designer," Procedia Struct. Integr., vol. 28, no. 2019, p.1892–1900, 2020.
DOI: 10.1016/j.prostr.2020.11.012
Google Scholar
[12]
L. Z. Linganiso and R. D. Anandjiwala, Fibre-reinforced laminates in aerospace engineering. Elsevier Ltd, 2016.
DOI: 10.1016/b978-0-08-100037-3.00004-3
Google Scholar
[13]
M. Xie, L. Zhan, B. Ma, and S. Hui, "Classification of fiber metal laminates (FMLs), adhesion theories and methods for improving interfacial adhesion: A review," Thin-Walled Struct., vol. 198, no. February, p.111744, 2024.
DOI: 10.1016/j.tws.2024.111744
Google Scholar
[14]
N.G. Gonzalez-Canche, E.A. Flores-Johnson, and J. G. Carrillo, "Mechanical characterization of fiber metal laminate based on aramid fiber reinforced polypropylene," Compos. Struct., vol. 172, p.259–266, 2017.
DOI: 10.1016/j.compstruct.2017.02.100
Google Scholar
[15]
E. Poodts, D. Ghelli, T. Brugo, R. Panciroli, and G. Minak, "Experimental characterization of a fiber metal laminate for underwater applications," Compos. Struct., vol. 129, p.36, 2015.
DOI: 10.1016/j.compstruct.2015.03.046
Google Scholar
[16]
D. Quinn, A. Murphy, W. McEwan, and F. Lemaitre, "Stiffened panel stability behaviour and performance gains with plate prismatic sub-stiffening," Thin-Walled Struct., vol. 47, no. 12, p.1457–1468, 2009.
DOI: 10.1016/j.tws.2009.07.004
Google Scholar