[1]
Goldberger A L, Goldberger Z D, Shvilkin A. ECG Leads [M]//Goldberger A L, Goldberger Z D, Shvilkin A. Goldberger's Clinical Electrocardiography. Elsevier. 2018: 21-31.
DOI: 10.1016/b978-0-323-40169-2.00004-4
Google Scholar
[2]
W Z, CHEN X, WANG Y, et al. Arrhythmia Recognition and Classific-ation Using ECG Morphology and Segment Feature Analysis [J]. IEEE/ACMTransactions on Computational Biology and Bioinformatics,2019,16(1): 131-8.
DOI: 10.1109/tcbb.2018.2846611
Google Scholar
[3]
GOLDBERGERA. Atrioventricular (AV) Heart Block[J]. Goldberger AL Clinical Electrocardiography: A Simplified Approach 7th ed St Louis: Mosby/Elsevier, 2006:203-14.
DOI: 10.1016/b0-323-04038-1/50018-4
Google Scholar
[4]
Yuan Jiali, Wang Qunshan. Prospects and challenges of artificial intelligence in the diagnosis of arrhythmia [J]. Advances in Cardiology, 2020, 41 (10): 999-1001+6
Google Scholar
[5]
Galloway CD, Valys AV, Shreibati JB, Treiman DL, Petterson FL, Gundotra VP, et al. Development and Validation of a Deep-Learning Model to Screen for Hyperkalemia From the Electrocardiogram. JAMA cardiology. 2019;4(5):428-36.
DOI: 10.1001/jamacardio.2019.0640
Google Scholar
[6]
Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE transactions on medical imaging.2016;35(5):1285-98.
DOI: 10.1109/tmi.2016.2528162
Google Scholar
[7]
Yıldırım Ö, Pławiak P, Tan R S, et al. Arrhythmia detection using deep convolutional neural network with long duration ECG signals[J]. Computers in biology and medicine, 2018, 102: 411-420.
DOI: 10.1016/j.compbiomed.2018.09.009
Google Scholar
[8]
Hannun A Y, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nature medicine, 2019, 25(1): 65-69.
DOI: 10.1038/s41591-018-0268-3
Google Scholar
[9]
Bazi Y, Al Rahhal M M, Al Hichri H, et al. Real-time mobile-based electrocardiogram system for remote monitoring of patients with cardiac arrhythmias[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 34(10): 2058013.
DOI: 10.1142/s0218001420580136
Google Scholar
[10]
Ribeiro AH, Ribeiro MH, Paixao GMM, Oliveira DM, Gomes PR, Canazart JA, et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nature communications. 2020; 11(1): 1760.
DOI: 10.1038/s41467-020-15432-4
Google Scholar
[11]
De Chazal P, O'Dwyer M, Reilly R B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features.[J]. IEEE transactions on bio-medical engineering, 2004, 51(7):1196-1206.
DOI: 10.1109/tbme.2004.827359
Google Scholar
[12]
MOODY G B, MARK R G. The impact of the MIT-BIH Arrhythmia Database [J].IEEE Engineering in Medicine and Biology Magazine,2001,20(3): 45-50.
DOI: 10.1109/51.932724
Google Scholar
[13]
MOODY G BMARK R G. The MIT-BIH arrhythmia database on CD-ROM and software for use with it; proceedings of the [1990] Proceedings Computers inCardiology, F, 1990[C]. IEEE, 1990.
DOI: 10.1109/cic.1990.144205
Google Scholar
[14]
YıLDıRıM Ö, PŁAWIAK P, TAN R-S, et al. Arrhythmia detection using deep convolutional neural network with long duration ECG signals [J]. Computers in Biology and Medicine, 2018, 102: 411-20.
DOI: 10.1016/j.compbiomed.2018.09.009
Google Scholar
[15]
J. Pan, W. J. Tompkins. A realtime qrs detection algorithm[J]. IEEE Transactions on Biomedical Engineering, 2007, 32(3): 230236
Google Scholar