Porous Ceramic Humidity Sensors Using Sol-Gel Processed ZrTiO4 Nanoparticles

Article Preview

Abstract:

Ceramic ZrTiO4 powders were prepared by a sol-gel method using zirconium oxychloride and titanium tetraisopropoxide. In situ high temperature X-ray diffraction results show that crystallization of the amorphous gel starts at 400°C. Single-phase ZrTiO4 nanoparticles of 46 nm average particle size, determined by nitrogen adsorption analysis, were obtained after heat treatment at 450°C for 1 h. After pressing these sinteractive powders, pellets with controlled pore size distribution were obtained by sintering at temperatures as low as 400°C. The analysis of pores by mercury porosimetry gives an average porosity of 45%. The electrical resistivity, determined by impedance spectroscopy measurements at 24°C under different humidity environments, shows the ability of these pellets to adsorb water vapor in the porous surfaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1803-1808

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Yang and J. M. Wu, J. Mater. Sci. 26, 631 (1991).

Google Scholar

[2] M. K. Jain, M. C. Bhatnagar, and G. L. Sharma, Sens. Actuators B 55, 17 (1999).

Google Scholar

[3] I. C. Cosentino, E. N. S. Muccillo, and R. Muccillo, Sens. Actuators B 96, 677 (2003).

Google Scholar

[4] S. Ananta, R. Tipakontitikul, and T. Tunkasiri, Mater. Lett. 57, 2637 (2003).

Google Scholar

[5] J. A. Navio, F. J. Marchena, M. Macias, P. J. Sanchez-Soto, and P. Pichat, J. Mater. Sci. 27, 2463 (1992).

DOI: 10.1007/bf01105059

Google Scholar

[6] C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).

Google Scholar

[7] L. L. Hench and J. K. West, Chem. Rev. 90, 33 (1990).

Google Scholar

[8] A. K. Bhattacharya, K. K. Malick, A. Hartridge, J. L. Woodhead, Mater. Lett. 18, 247 (1994).

Google Scholar

[9] A. K. Bhattacharya, K. K. Mallick, A. Hartridge, and J. L. Woodhead, J. Mater. Sci. 31, 267 (1996).

Google Scholar

[10] E. L. Sham, M. A. G. Aranda, E. M. Farfa-Torres, J. C. Gottifredi, M. Martinez-Lara, and S. Bruque, J. Solid State Chem. 139, 225 (1998).

Google Scholar

[11] M. Adrianainarivelo, R. J. P. Corriu, D. Lechlercq, P. H. Mutin, and A. Vious, J. Mater. Chem. 7, 279 (1997).

Google Scholar

[12] L. G. Karakchiev, T. M. Zima, and N. Lyakhov, Z. Inorg. Mater. 37, 386 (2001).

Google Scholar

[13] H. Zou and Y. S. Lin, Appl. Catal. A: Gen. 265, 35 (2004).

Google Scholar

[14] S. Yamamoto, M. Kakihana, S. Kato, J. Alloys Comp. 297, 81 (2000).

Google Scholar

[15] P. R. de Lucena, O. D. Pessoa-Neto, I. M. G. dos Santos, A. G. Souza, E. Longo, J. A. Varela, J. Alloys Comp. 397, 255 (2005).

Google Scholar

[16] T. Nitta, Z. Terada, and S. Hayakawa, J. Am. Ceram. Soc. 63, 295 (1980).

Google Scholar

[17] S. -L Yang and J. -M. Wu, J. Mater. Sci. 26, 631 (1991).

Google Scholar

[18] B. E. Warren, X-Ray Diffraction (Dover Publications, Inc., New York, 1969) p.253.

Google Scholar

[19] N. Claussen and M. Ruhle, in Advances in Ceramics, edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Inc., Columbus, 1981), p.137.

Google Scholar

[20] F. Khairulla and P. P. Phule, Mater. Sci. Eng. B 12, 327 (1992).

Google Scholar

[21] M. K. Jain, M. C. Bhatnagar, and G. L. Sharma, Jpn. J. Appl. Phys. 39, 345 (2000).

Google Scholar

[22] I. C. Cosentino, E. N. S. Muccillo, and R. Muccillo (2005) unpublished.

Google Scholar