Influence of Noble Metal Particles on Redox Reactions on Uranium Dioxide Surfaces

Article Preview

Abstract:

The influence of rare-earth doping and noble metal inclusions (ε-particles) on H2O2 and O2 reduction and H2 oxidation on UO2 surfaces has been studied electrochemically. These reactions are important in determining the corrosion behaviour of nuclear fuel inside failed waste containers under permanent waste disposal conditions. Experiments were conducted on SIMFUEL electrodes doped with various amounts of non-radioactive elements in proportions appropriate to simulate the chemical effects of in-reactor irradiation. The results show that ε-particles catalyze all of these reactions. These results indicate that ε-particles can act as catalytic anodes and cathodes depending on the redox conditions prevailing within a failed container.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1996-2003

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. McMurry, D.A. Dixon, J.D. Garroni, B.M. Ikeda, S. Stroes-Gascoyne, P. Baumgartner and T.W. Melnyk: Ontario Power Generation Report No: 06819-REP-01200-10092-R00, (2003).

Google Scholar

[2] F. King and M. Kolar: Ontario Power Generation Report No: 00819-REP-01200-10041-R00, (1999).

Google Scholar

[3] L.H. Johnson, D.M. LeNeveu, F. King, D.W. Shoesmith, M. Kolar, D.W. Oscarson, S. Sunder, C. Onofrei and J.L. Crosthwaite: Atomic Energy of Canada Limited Report, AECL11494-2, COG-95-552-2, (2000).

Google Scholar

[4] S. Sunder: Atomic Energy of Canada Limited Report, AECL-11380, COG-95-340, (1995).

Google Scholar

[5] S. Aronson, J.E. Rulli and B.E. Schaner: J. Chem. Phys. Vol. 35 (1961), p.1382.

Google Scholar

[6] G.J. Hyland and J. Ralph: High Temp-High Press Vol. 15 (1983), p.179.

Google Scholar

[7] P.W. Winter: J. Nucl. Mater. Vol. 161 (1989), p.38.

Google Scholar

[8] H. Kleykamp: J. Nucl. Mater. Vol. 131 (1985), p.221.

Google Scholar

[9] N.J. Dudney, R.L. Coble and H.L. Tuller,: J. Amer. Ceram. Soc. Vol. 64 (1981), p.627.

Google Scholar

[10] B.G. Santos, H.W. Nesbitt, J.J. Noël and D.W. Shoesmith: Electrochim. Acta Vol. 49 (2004), p.1863.

Google Scholar

[11] R. Battino, T.R. Rettich and T. Tominaga: J. Phys. Chem. Ref. Data Vol. 12 (1983), p.163.

Google Scholar

[12] W.H. Hocking, J.S. Betteridge and D.W. Shoesmith: J. Electroanal. Chem. Vol. 389 (1994), p.339.

Google Scholar

[13] V.A. Presnov, A.M. Trunov, Electrokhimiya, 11, 71, 77, 290 (1975).

Google Scholar

[14] N.A. Anastasijevic, Z.M. Dimitrijevic and R.R. Adzic: J. Electroanal. Chem. Vol. 199 (1986), p.351.

Google Scholar

[15] Lj. M. Vracar, D.B. Sepa and A. Damjanovic: J. Electrochem. Soc. Vol. 133 (1986), p.1835.

Google Scholar

[16] Lj.M. Vracar, D.B. Sepa and A. Damjanovic: J. Electrochem. Soc. Vol 134 (1987), p.1695.

Google Scholar

[17] J.M. Matinovic, D.B. Sepa and M.V. Vojnovic, Damjanovic: Electrochim. Acta Vol. 33 (1988), p.1267.

Google Scholar

[18] J.D. Kim, S.I. Pyun, T.H. Yang and J.B. Ju: J. Electroanal. Chem. Vol. 383 (1995), p.101.

Google Scholar

[19] J.S. Goldik, J.J. Noël and D.W. Shoesmith: Electrochemica Acta Vol. 49 (2004), p.1863.

Google Scholar

[20] M.E. Broczkowski, J.J. Noël and D.W. Shoesmith: J. Nucl. Mater. Vol. 346 (2005), p.16.

Google Scholar