Influence of Noble Metal Particles on Redox Reactions on Uranium Dioxide Surfaces

Abstract:

Article Preview

The influence of rare-earth doping and noble metal inclusions (ε-particles) on H2O2 and O2 reduction and H2 oxidation on UO2 surfaces has been studied electrochemically. These reactions are important in determining the corrosion behaviour of nuclear fuel inside failed waste containers under permanent waste disposal conditions. Experiments were conducted on SIMFUEL electrodes doped with various amounts of non-radioactive elements in proportions appropriate to simulate the chemical effects of in-reactor irradiation. The results show that ε-particles catalyze all of these reactions. These results indicate that ε-particles can act as catalytic anodes and cathodes depending on the redox conditions prevailing within a failed container.

Info:

Periodical:

Edited by:

P. VINCENZINI

Pages:

1996-2003

DOI:

10.4028/www.scientific.net/AST.45.1996

Citation:

M.E. Broczkowski et al., "Influence of Noble Metal Particles on Redox Reactions on Uranium Dioxide Surfaces", Advances in Science and Technology, Vol. 45, pp. 1996-2003, 2006

Online since:

October 2006

Export:

Price:

$35.00

[1] J. McMurry, D.A. Dixon, J.D. Garroni, B.M. Ikeda, S. Stroes-Gascoyne, P. Baumgartner and T.W. Melnyk: Ontario Power Generation Report No: 06819-REP-01200-10092-R00, (2003).

[2] F. King and M. Kolar: Ontario Power Generation Report No: 00819-REP-01200-10041-R00, (1999).

[3] L.H. Johnson, D.M. LeNeveu, F. King, D.W. Shoesmith, M. Kolar, D.W. Oscarson, S. Sunder, C. Onofrei and J.L. Crosthwaite: Atomic Energy of Canada Limited Report, AECL11494-2, COG-95-552-2, (2000).

[4] S. Sunder: Atomic Energy of Canada Limited Report, AECL-11380, COG-95-340, (1995).

[5] S. Aronson, J.E. Rulli and B.E. Schaner: J. Chem. Phys. Vol. 35 (1961), p.1382.

[6] G.J. Hyland and J. Ralph: High Temp-High Press Vol. 15 (1983), p.179.

[7] P.W. Winter: J. Nucl. Mater. Vol. 161 (1989), p.38.

[8] H. Kleykamp: J. Nucl. Mater. Vol. 131 (1985), p.221.

[9] N.J. Dudney, R.L. Coble and H.L. Tuller,: J. Amer. Ceram. Soc. Vol. 64 (1981), p.627.

[10] B.G. Santos, H.W. Nesbitt, J.J. Noël and D.W. Shoesmith: Electrochim. Acta Vol. 49 (2004), p.1863.

[11] R. Battino, T.R. Rettich and T. Tominaga: J. Phys. Chem. Ref. Data Vol. 12 (1983), p.163.

[12] W.H. Hocking, J.S. Betteridge and D.W. Shoesmith: J. Electroanal. Chem. Vol. 389 (1994), p.339.

[13] V.A. Presnov, A.M. Trunov, Electrokhimiya, 11, 71, 77, 290 (1975).

[14] N.A. Anastasijevic, Z.M. Dimitrijevic and R.R. Adzic: J. Electroanal. Chem. Vol. 199 (1986), p.351.

[15] Lj. M. Vracar, D.B. Sepa and A. Damjanovic: J. Electrochem. Soc. Vol. 133 (1986), p.1835.

[16] Lj.M. Vracar, D.B. Sepa and A. Damjanovic: J. Electrochem. Soc. Vol 134 (1987), p.1695.

[17] J.M. Matinovic, D.B. Sepa and M.V. Vojnovic, Damjanovic: Electrochim. Acta Vol. 33 (1988), p.1267.

[18] J.D. Kim, S.I. Pyun, T.H. Yang and J.B. Ju: J. Electroanal. Chem. Vol. 383 (1995), p.101.

[19] J.S. Goldik, J.J. Noël and D.W. Shoesmith: Electrochemica Acta Vol. 49 (2004), p.1863.

[20] M.E. Broczkowski, J.J. Noël and D.W. Shoesmith: J. Nucl. Mater. Vol. 346 (2005), p.16.

In order to see related information, you need to Login.