Photocatalytic Fiber for Environmental Application

Article Preview

Abstract:

In order to avoid large problems regarding peering of the titania layer coated on the substrate, we developed an epoch-making “strong titania fiber” consisting of photoactive surface layer with a nanometer-scale compositional gradient, which can effectively oxidize any kind of organic materials. An effective water-purification system using this fiber has been also developed. The basis of this technology is to incorporate a selected low-molecular-mass additive (Ti(OC4H9)4) into a precursor polymer from which the ceramic forms. After melt-spinning the resulting precursor polymer, thermal treatment of the spun fiber leads to controlled phase separation (“bleed-out”) of the additive; subsequent calcination stabilizes the compositionally changed surface region, generating a functional surface layer. This fiber consists of the silica-based core-structure and the gradient-like surface titania layer, which are strongly sintered. We also developed a water-purifier using this fiber (felt material). Any bacteria (common bacterium, legionera pneumophila, colon bacillus, heterotrophic bacteria, and so forth) and organic chemicals (dioxin, PCB, and so forth) were effectively decomposed into CO2 and H2O passing through the above purifier.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2118-2126

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Yajima, Y. Hasegawa, K. Okamura, T. Matsuzawa, Development of High Tensile Strength Silicon Carbide Fiber Using an Organosilicon Polymer Precursor, Nature, 273, 525-527 (1978).

DOI: 10.1038/273525a0

Google Scholar

[2] M. Takeda, J. Sakamoto, A. Saeki, Y. Imai, and H. Ichikawa, High Performance Silicon Carbide Fiber Hi-Nicalon for Ceramic Matrix Composites, Ceram. Eng. Sci. Proc., 16.

DOI: 10.1002/9780470314715.ch3

Google Scholar

[4] 37-44 (1995).

Google Scholar

[3] T. Ishikawa, Y. Kohtoku, K. Kumagawa, T. Yamamura & T. Nagasawa, High-Strength Alkali-Resistant Sintered SiC Fibre Stable to 2200 oC, Nature, 391, 773-775 (1998).

DOI: 10.1038/35820

Google Scholar

[4] J. Lipowitz, J. A. Rabe, G. A. Zank, A. Zangvil, Y. Xu, Structure and Prooperties of Sylramic TM Silicon Carbide Fiber - A Polycrystalline, Stoichiometric SiC Composition, Ceram. Eng. Sci. Proc., 18.

Google Scholar

[3] 147-157 (1997).

Google Scholar

[5] T. Ishikawa, H. Yamaoka, Y. Harada, T. Fujii, T. Nagasawa, A general process for in situ formation of functional surface layers on ceramics, Nature, 416, 64-67 (2002).

DOI: 10.1038/416064a

Google Scholar

[6] T. Ishikawa, Y. Harada, H. Hayashi, S. Kajii, Silica-Group Composite Oxide Fiber and Process for the Production, US Patent 6, 541, 416 B2 (Foreign Application Priority Date: June 13, 2000).

Google Scholar

[7] I. Sopyan, S. Murasawa, K. Hashimoto, and A. Fujishima, Highly Efficient TiO2 Film Photocatalyst, Degradation of Acetaldehyde, Chemistry Letters (The Chemical Society of Japan), pp.723-726 (1994).

DOI: 10.1246/cl.1994.723

Google Scholar

[8] T. Ishikawa, Ceramic Fiber with Decomposition Ability of Dioxine, Miraizairyo, 3(2), 26-33 (2003).

Google Scholar

[9] H. Koike, Y. Oki, and Y. Takeuchi, Mater. Res. Soc. Sym. Proc., 549, 141 (1999).

Google Scholar

[10] A. Matsuda, Y. Kotani, T. Kogure, M. Tatsumisago, T. Minami, Transparent Anatase Nanocomposite Films by the Sol-Gel Process at Low Temperatures, J. Am. Ceram. Soc., 83.

DOI: 10.1111/j.1151-2916.2000.tb01178.x

Google Scholar

[1] 229-231 (2000).

Google Scholar

[11] D. R. Park, J. Zhang, K. Ikeue, H. Yamashita, M. Anpo, Photocatalytic Oxidation of Ethylene to CO2 and H2O on Ultrafine TiO2 Photocatalysts in the Presence of O2 and H2O, J. Catal., 185, 114-119 (1999).

DOI: 10.1006/jcat.1999.2472

Google Scholar

[12] T. Ishikawa, Photocatalytic Fiber with Gradient Surface Produced from a Polycarbosilane and its Applications, International Journal of Applied Ceramic Technology, 1.

DOI: 10.1111/j.1744-7402.2004.tb00154.x

Google Scholar

[1] 49-55 (2004).

Google Scholar

[13] T. Ishikawa, Advances in Inorganic Fibers, Adv. Polym. Sci., 178, 109-144 (2005).

Google Scholar

[14] N. Takeda, M. Ohtani, T. Torimoto, S. Kuwabata, H. Yoneyama, Evaluation of Diffusibility of Adsorbed Propionaldehyde on Titanium Dioxide-Loaded Adsorbent Photocatalyst Films from Its Photocomposition Rate, J. Phys. Chem. B, 101, 2644-2649 (1997).

DOI: 10.1021/jp962551a

Google Scholar

[15] C. K. Chan, J. F. Porter, Y. G. Li, W. Guo, C. M. Chan, Effects of Calcination on the Microstructures and Photocatalytic Properties of Nanosized Titanium Dioxide Powders Prepared by Vapor Hydrolysis, J. Am. Ceram. Soc., 82.

DOI: 10.1111/j.1151-2916.1999.tb01802.x

Google Scholar

[3] 566-572 (1999).

Google Scholar

[16] H. Koike, Y. Oki, Y. Takeuchi, Preparing Titania fibers and their Photo-catalytic Activity, Mater. Res. soc. Sym. Proc., 549, 141-146 (1999).

Google Scholar

[17] T. Gunji, I. Sopyan, Y. Abe, Synthesis of Polytitanosiloxanes and their Transformation to SiO2-TiO2 Ceramic Fibers, J. Polym. Sci., Part A Polym. Chem., 32, 3133-3139 (1991).

DOI: 10.1002/pola.1994.080321613

Google Scholar

[18] T. Ishikawa, Photocatalytic Fiber with Gradient Surface Structure Produced from a Polycarbosilane and Its Application, Int.J. Appl. Chem. Technol., 1.

Google Scholar

[1] 49-55 (2004).

Google Scholar

[19] P. I. Gouma, P. K. Dutta, M. J. Mills, Structural Stability of Titania Thin Films, Nano Structured Materials, 11(8), 1231-1237 (1999).

DOI: 10.1016/s0965-9773(99)00413-4

Google Scholar

[20] C. Anderson, A. J. Bard, Improved Photocatalytic Activity and Characterization of Mixed TiO2/SiO2 and TiO2/Al2O3, J. Phys. Chem. B, 101, 2611-2616 (1997).

Google Scholar