Novel Synthesis for Ultrafine Barium Titanate Powders Using Peptized Titania Nano-Sol

Article Preview

Abstract:

We have investigated a novel synthesis for highly spherical and ultrafine barium titanate (BaTiO3) powders using a peptized titania (TiO2) nano-sol as a precursor. The obtained TiO2 nano-sol had the size less than 10 nm, which could be easily converted to BaTiO3 under 100 °C. The size of the resulting BaTiO3 powder could be controlled from 42 to 167 nm by lowering the solution concentration from 1.00 M to 0.15 M. BET analysis indicated that the as-prepared BaTiO3 powders had some porosity which was increased with the particle size. It was also found that the as-prepared BaTiO3 with smaller size had higher tetragonality and less intra-granular pores after annealing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

254-259

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. P. Phule and S. H. Risbud: J. Mater. Sci., Vol. 25 (1990) p.1169.

Google Scholar

[2] L. Sheppard: Ceram. Bull., Vol. 72 (1993) p.45.

Google Scholar

[3] B. Huybrechts, K. Ishizaki, and M. Takata: J. Mater. Sci., Vol. 30 (1995) p.2463.

Google Scholar

[4] S. K. Bhattacharya, P. M. Raj, D. Balaraman, H. Windlass, and R. R. Tummala: Circuit World Vol. 30 (2003) p.31.

Google Scholar

[5] J. O. Eckert Jr., C. C. Hung-Houston, B. L. Gersten, M. M. Lencka, and R. E. Riman: J. Am. Ceram. Soc., Vol. 79 (1994) p.2929.

Google Scholar

[6] I. J. Clark, T. Takeuchi, N. Ohtori, and D. C. Sinclair: J. Mater. Chem., Vol. 9 (1999) p.83.

Google Scholar

[7] T. Noma, S. Wada, M. Yano, and T. Suzuki: J. Appl. Phys., Vol. 80 (1996) p.5223.

Google Scholar

[8] D. F. K. Hennings, C. Metzmacher, and B. S. Schreinemacher: J. Am. Ceram. Soc., Vol. 84 (2001) p.179.

Google Scholar

[9] F. Guangneng, H. Lixia, and H. Xueguang: J. Crystal Growth, Vol. 279 (2005) p.489.

Google Scholar

[10] S. Urek and M. Drofenik: J. Euro. Ceram. Soc., Vol. 18 (1998) p.279.

Google Scholar

[11] S. A. Bruno: US Patent 5, 087, 437 (1992).

Google Scholar

[12] K. Gomi, K. Tanaka, and H. Kamiya: J. Ceram. Soc. Jpn., Vol. 111 (2003) p.61.

Google Scholar

[13] C. J. Brinker and G. W. Scherer: Sol-Gel Science (Academic Press, New York, 1990).

Google Scholar

[14] B. L. Bischoff and M. A. Anderson: Chem. Mater., Vol. 7 (1995) p.1772.

Google Scholar

[15] T. Zeng, Y. Qiu, L. Chen, and X. Song: Mater. Chem. Phys., Vol. 56 (1998) p.163.

Google Scholar

[16] R. Zhang and L. Gao: Mater. Res. Bull., Vol. 36 (2001) p. (1957).

Google Scholar

[17] M. Langlet, A. Kim, M. Audier, C. Guillard, and J. M. Herrmann: Thin Solid Films, Vol. 429 (2003) p.13.

DOI: 10.1016/s0040-6090(02)01290-7

Google Scholar

[18] H. S. Jung, H. Shin, J-R. Kim, J. Y. Kime, and K. S. Hong: Langmuir, Vol. 20 (2004) p.11732.

Google Scholar

[19] X. Wang, B. I. Lee, M. Z. Hu, E. A. Payzant, and D. A. Blom: J. Mater. Sci. Materials in Electronics, Vol. 14 (2003) p.495.

Google Scholar

[20] S. Wada, T. Suzuki, and T. Noma: J. Ceram. Soc. Jp., Vol. 103 (1995) p.1220.

Google Scholar