[1]
A.G. Merzhanov: Theory and Practice of SHS: Worldwide State of the Art and the Newest Results, Int. J. of Self-Propagating High-Temperature Synthesis, 2 (1993), p. pp.113-157.
Google Scholar
[2]
J.J. Moore, and H.J. Feng: Combustion Synthesis of Advanced Materials: Reaction Parameters, Progress in Mater. Sci., 39 (1995), p. pp.275-316.
Google Scholar
[3]
Z.A. Munir. and U. Anselmi-Tamburini: Self-propagating Exothermic Reactions: The synthesis of High-Temperature Materials by Combustion, Mater. Sci. Reports 3 (1989), p. pp.277-365.
DOI: 10.1016/0920-2307(89)90001-7
Google Scholar
[4]
Ya.B. Zel'dovich, and D.A. Frank-Kamenetskii: Zh. Fiz. Khim., 12 (1938), p.100.
Google Scholar
[5]
B.I. Khaikin, and A.G. Merzhanov: Theory of Thermal Propagation of a Chemical Reaction Front, Combust., Explos. Shock Waves, 2 (1966), p. pp.22-27.
DOI: 10.1007/bf00749022
Google Scholar
[6]
A.G. Merzhanov: Arch. Procesow Spalania, 5, 1 (1974), p.17.
Google Scholar
[7]
A.G. Merzhanov: SHS-process: Combustion Theory and Practice, Arch. Comb., 1 (1981), p. pp.23-48.
Google Scholar
[8]
M.G. Lakshmikantha, and J.A. Sekhar: Analytical Modeling of the Propagation of a Thermal Reaction Front in Condensed Systems, J. Am. Ceram. Soc. 77, 1 (1994), p. pp.202-210.
DOI: 10.1111/j.1151-2916.1994.tb06978.x
Google Scholar
[9]
M.G. Lakshmikantha, and J.A. Sekhar: An Investigation on the Effect on Porosity and Diluents on Micropyretic Synthesis, Metall. Trans. A, 24A (1993), p. pp.617-628.
DOI: 10.1007/bf02656631
Google Scholar
[10]
V.K. Smolyakov: Inert Additive Melting in a Gasless Combustion Wave, Combust., Explos. Shock Waves, 38, 5 (2002), p. pp.559-565.
DOI: 10.1134/s0010508218010057
Google Scholar
[11]
Z.Y. Fu, R.Z. Yuan, Z.A. Munir, and Z.L. Yang: Fundamental Study on SHS Preparation of TiB2-Al Composites, Int. J. Self-Propagating High-Temperature Synthesis 1, 1 (1992), p. pp.119-124.
Google Scholar
[12]
H.P. Li, and J.A. Sekhar: The Influence of the Reactant Size on the Micropyretic Synthesis of NiAl Intermetallic Compounds, J. Mater. Res. 10, 10 (1995), p. pp.2471-2480.
DOI: 10.1557/jmr.1995.2471
Google Scholar
[13]
H.P. Li: Investigation of Propagation Modes and Temperature/Velocity Variation on Unstable Combustion Synthesis, J. Mater. Res. 17, 12 (2002), p. pp.3213-3221.
DOI: 10.1557/jmr.2002.0465
Google Scholar
[14]
A.K. Bhattacharya: Green Density of a Powder Compact and Its Influence on the Steady-State Wave Velocity in Combustion Synthesis of Condensed Phase, J. Am. Ceramic Society 74, 9 (1991), p. pp.2113-2116.
DOI: 10.1111/j.1151-2916.1991.tb08268.x
Google Scholar
[15]
C.R. Kachelmyer, A. Varma, A.S. Rogachev, and A.E. Sytschev: Influence of Reaction Mixture Porosity on the Effective Kinetics Gasless Combustion Synthesis, Ind. Eng. Chem. Research 37 (1998), p. pp.2246-49.
DOI: 10.1021/ie9704915
Google Scholar
[16]
R.W. Rice: Review Microstructural Aspects of Fabricating Bodies by Self-propagating Synthesis, J. Mat. Sci. 26 (1991), p. pp.6533-6541.
DOI: 10.1007/bf02402643
Google Scholar
[17]
C. Lau, A.S. Mukasyan, and A. Varma: Reaction and Phase Separation Mechanisms during Synthesis of Alloys by Thermite Type Combustion Reactions, J. Mater. Res. 18, 1 (2003), p. pp.121-128.
DOI: 10.1557/jmr.2003.0018
Google Scholar