The Instability of Li2O-Containing Celsian in BAS/Si3N4 Composites

Article Preview

Abstract:

For application of high-temperature structural materials, in-situ Si3N4 reinforced BAS composites have been explored. The main drawback for thermal cycling use is the persistent being of hexacelsian BAS phase, which will cause a volume change around 300°C. The effective additives, like Li2O can promote the polymorphic conversion of hexacelsian to celsian. The XRD experiments show that in monolithic system the Li2O-containing celsian can persistent exist at 1650°C; however, in BAS/Si3N4 composite it transforms into hexacelsian pahse at 1600°C. It is found that the presence of Si3N4 could enhance the instability of the Li2O-containing celsian above 1590°C, in which the hexacelsian is a stable phase in thermodynamics. The instability mechanism is indirectly verified as the doping effect of Si, which is coming from thermal decomposition of Si3N4 in the composites. It is well known that Si or SiO2 is a network former, which could make crankshaft-like chain structure of celsian instable and enhance the layer structure of hexacelsian formed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-72

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. K Richardson, D.W. Freitag and D.L. Hunn: J. Am. Ceram. Soc. Vol. 78(10) (1995), p.2622.

Google Scholar

[2] A. Bandyopadhyay, S.W. Quander, P.B. Aswath, D.W. Freitag, K. K Richardson and D.L. Hunn: Scripta Metallurgica et Materialia Vol. 32(9) (1995), p.1417.

DOI: 10.1016/0956-716x(95)00181-t

Google Scholar

[3] A. Bandyopadhyay, P.B. Aswath, W.D. Porter and O.B. Cavin: J. Mater. Res. Vol. 10(5) (1995), p.1256.

Google Scholar

[4] S.W. Quander, A. Bandyopadhyay and P.B. Aswath: J. Mater. Sci. Vol. 32 (1997), p. (2021).

Google Scholar

[5] F. Yu, C.R. Ortiz-Longo, K.W. White: J. Mater. Sci. Vol. 34 (1999), p.2821.

Google Scholar

[6] N.P. Bansal and M.J. Hyatt: J. Mater. Res. Vol. 4(5) (1989), p.1257.

Google Scholar

[7] H.C. Lin and W.R. Foster: Am. Mineral. Vol. 53 (1968), p.134.

Google Scholar

[8] B. Yoshiki and K. Matsumoto: J. Am. Ceram. Soc. Vol. 34(9) (1951), p.283.

Google Scholar

[9] K.T. Lee and P.B. Aswath: Material Chemistry and Physics Vol. 71 (2001), p.47.

Google Scholar

[10] N.P. Bansal: Material Science and Engineering A Vol. 342 (2003), p.23.

Google Scholar

[11] C. Liu , S. Komarneni and R. Roy: J. Am. Ceram. Soc. Vol. 78(9) (1995), p.2521.

Google Scholar

[12] K.T. Lee and P.B. Aswath: International Journal of Inorganic Materials Vol. 3 (2001), p.687.

Google Scholar

[13] K.T. Lee and P.B. Aswath: Material Science and Engineering A Vol. 352 (2003), p.1.

Google Scholar

[14] N.P. Bansal and C.H. Drummond III: J. Am. Ceram. Soc. Vol. 76(5) (1993), p.1321.

Google Scholar

[15] M. Chen, W.E. Lee and P.F. James: J. Non-Cryst. Solids. Vol. 147 (1992), p.532.

Google Scholar

[16] K.T. Lee and P.B. Aswath: J. Am. Ceram. Soc. Vol. 83(12) (2000), p.352.

Google Scholar

[17] JCPDS card: #9-250 for α-Si3N4, #9-259 for β-Si3N4, #12-726 for hexacelsian BAS, #18-153 for celsian BAS.

Google Scholar

[18] J.C. Debsikdar: Ceram. Eng. Sci. Proc. Vol. 14(1-2) (1993), p.405.

Google Scholar

[19] M.C. Guillem Villar, C. Guillem Monzonis and J.A. Navarro: Trans. J. Br. Ceram. Soc. Vol. 82(2) (1983), p.69.

Google Scholar

[20] M.C. Guillem Villar, C. Guillem Monzonis and P.E. Lopez: Trans. J. Br. Ceram. Soc. Vol. 82(6) (1983), p.197.

Google Scholar

[21] R.V. Krishnarao, V. V Ramarao and Y.R. Mahajan: J. Mater. Res. Vol. 12(12) (1997), p.3322.

Google Scholar

[22] A. Bandyopadhyay and P.B. Aswath: J. Mater. Res. Vol. 10(12) (1995), p.3143.

Google Scholar