Growth of Phosphorous Doped n-Type Diamond and the Electrical Properties

Article Preview

Abstract:

We have succeeded to grow high quality phosphorus doped n-type diamond thin films on {111} diamond substrates. Although the ionization energy of phosphorus donor is large (0.57 eV), the n-type conductivity is clearly observed by Hall measurements. The Hall mobility is as high as 660 cm2/V-sec at room temperature. In this paper, current status of n-type diamond research are mentioned mainly focused on the growth of high mobility n-type diamond and its electrical properties. High quality diamond growth has been carried out by surface pre-treatment of diamond substrate. The Hall measurements performed in a wide temperature range gives detailed information about the n-type conductivity nature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-8

Citation:

Online since:

October 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Koizumi, H. Ozaki, M. Kamo, Y. Sato and T. Inuzuka, Appl. Phys. Lett., Vol. 71 (1997), pp.1064-1067.

Google Scholar

[2] S. Koizumi, M. Kamo, Y. Sato, S. Mita, A. Sawabe, A. Reznik, C. Uzan-Saguy, R. Kalish, Diamond Relat. Mater., Vol. 7 (2-5) (1998), pp.540-544.

DOI: 10.1016/s0925-9635(97)00250-1

Google Scholar

[3] S. Koizumi, phys. stat. sol. (a) Vol. 172 (1999), pp.71-78.

Google Scholar

[4] S. Koizumi, SEMICONDUCTORS AND SEMIMETALS Vol. 76 (2003) , 239-259.

Google Scholar

[5] M. Katagiri, J. Isoya, S. Koizumi and H. Kanda, Appl. Phys. Lett., Vol. 85 (26) (2004), pp.6365-6367.

DOI: 10.1063/1.1840119

Google Scholar

[6] M. Nesládek, K. Meykens, K. Haenen, G. Knuyt, L. M. Stals, T. Teraji, and S. Koizumi, Phys. Rev. B Vol. 59 (1999), p.14852.

DOI: 10.1103/physrevb.59.14852

Google Scholar

[7] E. Gheeraert, S. Koizumi, T. Teraji, and H. Kanda, Solid State Commun. Vol. 113 (2000), p.577.

Google Scholar

[8] H. Sternschulte, K. Thonke, R. Sauer, and S. Koizumi, Phys. Rev. B Vol. 59 (1999), p.12924.

Google Scholar

[9] M. Hasegawa, T. Teraji and S. Koizumi, Appl. Phys. Lett. Vol. 79 (2001), p.3068.

Google Scholar

[10] S. Koizumi, K. Watanabe, M. Hasegawa and H. Kanda, Science, Vol. 292 (2001), p.1899.

Google Scholar

[11] A. BenMoussa, U. Schühle, K. Haenen, M. Nesládek, S. Koizumi and and J. -F. Hochedez, phys. stat. sol. (a) Vol. 201, No. 11 (2004), pp.2536-2541.

DOI: 10.1002/pssa.200405187

Google Scholar

[12] A. BenMoussa, U Sch¨uhle, F Scholze, U Kroth, K Haenen, T Saito, J Campos, S Koizumi, C Laubis, M Richter, VMortet, A Theissen and J F Hochedez, Meas. Sci. Technol. Vol. 17 (2006), pp.913-917.

DOI: 10.1088/0957-0233/17/4/042

Google Scholar

[13] Z. Teukam, J. Chevallier, C. Saguy, R. Kalish, D. Ballutaud, M. Barbe, F. Jomard, A. Tromson-Carli, C. Cytermann, J.E. Butler, M. Bernard, C. Baron, A. Deneuville, NATURE MATERIALS Vol. 2 (7) (2003), pp.482-486.

DOI: 10.1038/nmat929

Google Scholar

[14] H. Kato, S. Yamasaki and H. Okushi, Appl. Phys. Lett., Vol. 86 (22) (2005), 222111.

Google Scholar

[15] C. Tavares, S. Koizumi and H. Kanda, phys. stat. sol. (a) Vol. 202, No. 11 (2005), pp.2129-2133.

Google Scholar

[16] T. Teraji, M. Katagiri, S. Koizumi, T. Ito, and H. Kanda, Jpn. J. Appl. Phys. Vol. 42 (2003), p. L882.

DOI: 10.1143/jjap.42.l882

Google Scholar

[17] S. Koizumi, T. Teraji, H. Kanda, Diamond Relat. Mater., Vol. 9 (2000), p.935.

Google Scholar

[18] F. Nava, C. Canali, C. Jacoboni, L. Reggiani, and S. F. Kozlov, Solid State Commun. Vol. 33 (1980), p.475.

DOI: 10.1016/0038-1098(80)90447-0

Google Scholar