Influence of Energy Input on Suspension Properties

Article Preview

Abstract:

Electrosteric stabilization of a commercially available boehmite powder in water was investigated to perform milling experiments and reduce the particle size to the nanoscale range. The effect of three sodium polyacrylate dispersants (Na-PA) with different molar masses (2,100, 8,000, 15,000 g/mol) on the suspension properties before and after milling experiments was assessed by electroacoustic measurements in comparison with rheological tests. A significant loss of the stabilizing effect of the sodium polyacrylates due to the application of mechanical energy was detectable. Measurements of the adsorbed amount of the dispersants after milling via detection of the COD in the background solution show a considerable desorption from the particle surface. Accessorily performed analyses of the molar mass of the polymers yielded a destruction of the polymer chains due to the mechanical energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-146

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. R. Studard; E. Amstad and L. J. Gauckler: Langmuir (2007) No. 23, p.1081–1090.

Google Scholar

[2] L. Chera, E. Palcevskis, M. Berzins, A. Lipe and I. Jansone: Functional Materials and Nanotechnologies, Journal of Physics Vol. 93 (2007), p.1–5.

Google Scholar

[3] W. Peukert and A. Voronov: cfi/Ber. DKG Vol. 84 (2007) No. 13, p.28–34.

Google Scholar

[4] C. Schilde, S. Breitung-Faes and A. Kwade: cfi/Ber. DKG Vol. 84 (2007) No. 13, p.12–17.

Google Scholar

[5] C. Bernhardt, E. Reinsch and K. Husemann: Powder Technology Vol. 105 (1999), p.357–361.

Google Scholar

[6] F. Stenger, S. Mende, J. Schwedes and W. Peukert: Chemical Engineering Science Vol. 60 (2005) No. 16, p.4557–4565.

DOI: 10.1016/j.ces.2005.02.057

Google Scholar

[7] K. Vishista and F. D. Gnanam: Materials Letters Vol. 58 (2004), p.1576–1581.

Google Scholar

[8] O. Weichold, T. Dederichs and M. Möller: Journal of Colloid and Interface Science Vol. 306 (2007), p.300–306.

DOI: 10.1016/j.jcis.2006.10.060

Google Scholar

[9] N. Omura, Y. Hotta, K. Sato, Y. Kinemuchi, K. Shoichi and K. Watari: Journal of the American Ceramic Society Vol. 89 (2006) No. 9, p.2738–2743.

Google Scholar

[10] T. Chartier, S. Souchard, J. F. Baumard and H. Vesteghem: Journal of the European Ceramic Society Vol. 16 (1996), p.1283–1291.

DOI: 10.1016/0955-2219(96)00058-1

Google Scholar

[11] H. Yilmaz, T. Isobe, Y. Hotta, K. Sato and K. Watari: Journal of the Ceramic Society of Japan Vol. 114 (2006) No. 11, p.1100–1102.

Google Scholar

[12] R. Greenwood: Advances in Colloid and Interface Science Vol. 106 (2003), p.55–81.

Google Scholar

[13] D. Santhiya, G. Nandini, S. Subramanian and K. A. Natarajan: Colloids and Surfaces A.: Physicochemical Engineering Aspects Vol. 133 (1998) No. 1-2, p.157–163.

DOI: 10.1016/s0927-7757(97)00132-5

Google Scholar

[14] K. K. Das and P. Somasundaran: Colloids and Surfaces A.: Physicochemical Engineering Aspects Vol. 223 (2003), p.17–25.

Google Scholar