Effect of the Two-Step Sintering in the Microstructure of Ultrafine Alumina

Abstract:

Article Preview

Sintering in two-steps has been applied with success for densification of nanometric and submicrometer ceramic powders without grain growth. In this work the applicability of two-step sintering as a means of suppressing the grain growth of submicrometer alumina is verified. Experiments, in which the grain growth and densification were characterized after conventional sintering and two-step sintering, were conducted. Conventional sintering is used as a choice of the steps for two-step sintering. In the first two-step sintering studied, one hypothesis that the maximization of final density with minimum grain growth can be achieved by improving the narrowing of grain size distribution at a pre-densification sintering stage was assumed. And the other two-step sintering is based on works of Chen and Wang, in which the samples are first heated to a higher temperature to achieve an intermediate density, and then cooled down and held at a lower temperature until they are dense. The results showed that the choice of steps does not permit to suppress grain growth, but, the two-step sintering influenced in the development of the final microstructure, taking to microstructures which were finer grained than in alumina sintered conventionally.

Info:

Periodical:

Edited by:

Pietro VINCENZINI and Jean-François BAUMARD

Pages:

221-226

Citation:

A. S. A. Chinelatto et al., "Effect of the Two-Step Sintering in the Microstructure of Ultrafine Alumina", Advances in Science and Technology, Vol. 62, pp. 221-226, 2010

Online since:

October 2010

Export:

Price:

$38.00

[1] S. D. Skrovanek, R. C. Bradt: J. Am. Ceram. Soc. Vol. 62 (1979), p.215.

[2] R. C. Rice: J. Mater. Sci. Vol. 32 (1997), p.1673.

[3] R. S. Roy, H. Guchhait, A. Chanda, D. Basu and M. K. Mitra: J. Eur. Ceram. Soc. Vol. 27 (2007), p.4737.

[4] A. Muchtar, L. C. Lim: Acta Mater. Vol. 46 (1998), p.1683.

[5] A. Krell, P. Blank, H. Ma, T. Hutzler and M. Nebelung: J. Am. Ceram. Soc., Vol. 86 (2003), p.546.

[6] P. Bowen, C. Carry: Pow. Tech. Vol. 128 (2002), p.248.

[7] A. Weibel, R. Bouchet, R. Denoyel, P. Knauth: J. Eur. Ceram. Soc. Vol. 27 (2007), p.2641.

[8] Z. He, J. Ma: Mat. Let. Vol. 44 (2000), p.14.

[9] L. Gao, J. S. Hong, H. Miyamoto, D. D. L. Torre: J. Eur. Ceram. Soc. Vol. 20 (2000), p.2149.

[10] D. Chakravarty, S. Bysakh, K. Muraleedharan, T. N. Rao, R. Sundaresan: J. Am. Ceram. Soc., Vol. 91 (2008), p.203.

[11] Y. Zhou, K. Hirao, Y. Yamauchi, S. Kanzaki: J. Eur. Ceram. Soc. Vol. 24 (2004), p.3465.

[12] F. J. T. Lin and L. C. DeJonghe: J. Am. Ceram. Soc., Vol. 80 (1997), p.2269.

[13] M. –Y. Chu, L. C. DeJonghe, M. K. F. Kim and F. J. T. Lin: J. Am. Ceram. Soc., Vol. 74 (1991), p.2902.

[14] F. Lin and L. C. DeJonghe: J. Am. Ceram. Soc., Vol. 80 (1997), p.2891.

[15] I-W Chen, X. H Wang: Nature, Vol. 404 (2000), p.168.

[16] Z.R. Hesabi, M. Haghighatzadeh, M. Mazaheri, D. Galusek, S.K. Sadrnezhaad: J. Eur. Ceram. Soc. Vol. 29 (2009), p.1371.

[17] X. -H. Wang, P. -L. Chen and I. -W. Chen: J. Am. Ceram. Soc., Vol. 89 (2006), p.431.

[18] X. -H. Wang, X-Y. Deng, H-I. Bai, H. Zhou, W-G. Qu, L. T. Li, I-W. Chen: J. Am. Ceram. Soc., Vol. 89 (2006), p.438.

[19] J. Tartaj and P. Tartaj: J. Am. Ceram. Soc., Vol. 92 (2009), p. S103.

[20] Z. Razavi Hesabi, M. Haghighatzadeh, M. Mazaheri, D. Galusek and S. K. Sadrnezhaad: J. Eur. Ceram. Soc. Vol. 29 (2009), p.1371.

[21] C. -J. Wang, C. -Y. Huang and Y. -C. Wu: Ceram. Int., Vol. 35 (2009), p.1467.

[22] M. Mazaheri, Z. Razavi Hesab and S. K. Sadrnezhaad: Scr. Mater. Vol. 59 (2008), p.139.

[23] K. Bodisová, P. Sajgalík, P., D. Galusek, P. Svancárek: J. Am. Ceram. Soc. Vol 90.

[1] (2007), p.3330.

[24] J. Li and Y. Ye: J. Am. Ceram. Soc. Vol. 89 (2006), p.139.

[25] M. Mazaheri, A. Simchi, F. Golestani-Fard: J. Eur. Ceram. Soc. Vol. 28 (2008), p.2933.