Aerogel Catalysts

Article Preview

Abstract:

Aerogels are often largely mesoporous solids, with a porosity which may exceed 90 vol% and a specific surface area up to 1000 m2 g-1. Such materials were first obtained by Kistler in 1932, and designate gels in which the liquid was replaced with a gas without collapsing the gel solid network. Contrary to xerogels dried from wet gels by evaporation with an important shrinkage, the first aerogels were obtained by a “supercritical drying” technique in which the liquid which impregnated the gels was evacuated after being transformed to a supercritical fluid. The diversity in nature of the solid constituting the rigid network is very large. It includes simple oxides, multi oxide compositions, organic and hybrid organic-inorganic polymers and carbon. This diversity as well as the high specific pore volume and surface area make aerogels applicable either as catalysts or as catalyst supports. Besides, molecular catalysts such as transition metal complexes or enzymes can easily be immobilized in aerogels, which opened the road to new supported molecular catalysts and biocatalysts. This communication reviews the synthesis and properties of oxide aerogel catalysts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-183

Citation:

Online since:

October 2010

Authors:

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.119.

Google Scholar

[2] M.A. Green: High Efficiency Silicon Solar Cells (Trans Tech Publications, Switzerland 1987).

Google Scholar

[3] Y. Mishing, in: Diffusion Processes in Advanced Technological Materials, edtied by D. Gupta Noyes Publications/William Andrew Publising, Norwich, NY (2004), in press.

Google Scholar

[4] G. Henkelman, G. Johannesson and H. Jónsson, in: Theoretical Methods in Condencsed Phase Chemistry, edited by S.D. Schwartz, volume 5 of Progress in Theoretical Chemistry and Physics, chapter, 10, Kluwer Academic Publishers (2000).

Google Scholar

[5] R.J. Ong, J.T. Dawley and P.G. Clem: submitted to Journal of Materials Research (2003).

Google Scholar

[6] P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. Ashley, U.S. Patent 6, 231, 666. (2001).

Google Scholar

[7] Information on.

Google Scholar

[1] S.S. Kistler: J. Phys. Chem. Vol. 36 (1932), p.52.

Google Scholar

[2] A.C. Pierre and G.M. Pajonk: Chem. Rev. Vol. 102 (2002), p.4243.

Google Scholar

[3] S.J. Teichner, G. -A. Nicolaon, M.A. Vicarini and G.E.E. Gardes: Adv. Colloid Interface Sci. Vol. 5 (1976), p.245.

DOI: 10.1016/0001-8686(76)80004-8

Google Scholar

[4] I.V. Mishakov, A.A. Vedyagin, A.F. Bedilo, V.I. Zaikovskii, K.J. Klabunde: Catal. Today Vol. 144 (2009), p.278.

DOI: 10.1016/j.cattod.2009.01.018

Google Scholar

[5] Z. Novak, P. Kotnik, Z. Knez: J. Non-Cryst. Solids Vol. 350 (2004), p.308.

Google Scholar

[6] C. -T. Wang, S. -H. Ro: Appl. Catal. A: Gen. Vol. 285 (2005), p.196.

Google Scholar

[7] N. Moussa, A. Ghorbel, P. Grange: J. Sol-Gel Sci. Technol. Vol. 33 (2005), p.127.

Google Scholar

[8] F. Somma, P. Canton, G. Strukul: J. Catal. Vol. 229 (2005), p.490.

Google Scholar

[9] S. Cao, K.L. Yeung, P. -L. Yue: Appl. Catal. B: Environ. Vol. 76 (2007), p.64.

Google Scholar

[10] A. Gisler, T. Buergi, A. Baiker: J. Catal. Vol. 222 (2004), p.461.

Google Scholar

[11] F. Zidan, G. Pajonk, J.E. Germain and S.J. Teichner: J. Catal. Vol. 52 (1978), p.133.

Google Scholar

[12] T. Osaki, T. Horiuchi, T. Sugiyama, K. Suzuki and T. Mori: Catal. Lett. Vol. 52 (1998), p.171.

Google Scholar

[13] T. Chono, H. Hamada, M. Haneda, H. Imai and H. Hirashima: J. Non-Cryst. Solids Vol. 285 (2001), p.333.

Google Scholar

[14] M.I. Kim, D.W. Park, S.W. Park, X. Yang, J.S. Choi, D.J. Suh: Catal. Today Vol. 111 (2006), p.212.

Google Scholar

[15] A. Orlovic, D. Janackovic and D. Skala: Catal. Commun. Vol. 3 (2002), p.119.

Google Scholar

[16] M. Lacroix, G.M. Pajonk and S.J. Teichner: J. Catal. Vol. 101 (1986), p.314.

Google Scholar

[17] K. Kearby, S. Swann Jr.: J. Ind. Eng. Chem. Vol. 32 (1940), p.1607.

Google Scholar

[18] M. Dreyer, G.K. Newman, L. Lobban, S.J. Kersey, R. Wang and J.H. Harwell: Mater. Res. Soc. Symp. Proc. Vol. 454 (1997), p.141.

Google Scholar

[19] X. Mugniery, T. Chafik, M. Primet and D. Bianchi: Catal. Today Vol. 52 (1999), p.15.

Google Scholar

[20] C. -T. Wang and R.J. Willey: Catal. Today Vol. 52 (1999), p.83.

Google Scholar

[21] S.M. Maurer and E.I. Ko: J. Catal. Vol. 135 (1992), p.125.

Google Scholar

[22] J.M. Watson, A.T. Cooper, J.R.V. Flora: Environ. Eng. Sci. Vol. 22 (2005), p.666.

Google Scholar

[23] A. Gisler, T. Buergi, A. Baiker: Phys. Chem. Chem. Phys. Vol. 5 (2003), p.3539.

Google Scholar

[24] Y. Deng and W.F. Maier: J. Catal. Vol 199 (2001), p.115.

Google Scholar

[25] J.B. Miller, S.E. Rankin and E.I. Ko: J. Catal. Vol. 148 (1994), p.673.

Google Scholar

[26] A. Sayari, A. Ghorbel, G.M. Pajonk and S.J. Teichner: Bull. Soc. Chim. Fr. Vol. 1-2 (1982), p.39.

Google Scholar

[27] S. Martinez, M. Meseguer, L. Casas, E. Rodriguez, E. Molins, M. Moreno-Manas, A. Roig, R.M. Sebastian and A. Vallribera: Tetrahedron Vol. 59 (2003), p.1553.

Google Scholar

[28] S. Abouarnadasse, G.M. Pajonk and S.J. Teichner, in: Proc. 9th. Int. Congr. Catal., edited by M.J. Phillips and M. Ternan, Vol. 4 (1988), p. (1936).

Google Scholar

[29] A. Sayari, A. Ghorbel, G.M. Pajonk and S.J. Teichner: Bull. Soc. Chim. Fr. Vol. 5-6 (1981), p.220.

Google Scholar

[30] F. Blanchard, B. Pommier, J.P. Reymond and S.J. Teichner: Stud. Surf. Sci. Catal. Vol. 16 (1983), p.395.

Google Scholar

[31] M. Kang, J. Choi, Y.T. Kim, E.D. Park, C.B. Shin, D.J. Suh, J.E. Yie: Korean J. Chem. Eng. Vol. 26 (2009), p.884.

Google Scholar

[32] O. Zegaoui, C. Hoang-Van and M. Karroua: Appl. Catal. B: Environ. Vol. 9 (1996), p.211.

Google Scholar

[33] R.J. Willey, C. -T. Wang and J.B. Peri: J. Non-Cryst. Solids Vol. 186 (1995), p.408.

Google Scholar

[34] D. Bianchi, T. Chafik, M. Khalfallah and S.J. Teichner: Appl. Catal. A: Vol. 123 (1995), p.89.

Google Scholar

[35] D. Bianchi, T. Chafik, M. Khalfallah and S.J. Teichner: Appl. Catal. A: Vol. 112 (1994), p.219.

Google Scholar

[36] G.M. Pajonk and T. Manzalji: Catal. Lett. Vol. 21 (1993), p.361.

Google Scholar

[37] H. Zarrouk, A. Ghorbel, G.M. Pajonk and S.J. Teichner: Bull. Soc. Chim. Fr. Vol. 3-4 (1982), p.71.

Google Scholar

[38] R.J. Willey, E. Kotur, J. Kehoe and G. Busca, in: Proc. Int. Symp. Adv. Sol-Gel Process. Appl, edited by Y.A. Attia, (1994) p.351.

Google Scholar

[39] J. Akl, T. Ghaddar, A. Ghanem, H. El-Rassy: J. Mol. Catal. A: Chem. Vol. 312 (2009), p.18.

Google Scholar

[40] G.M. Pajonk and T. Manzalji: Appl. Catal. A: Vol. 108 (1994), p.41.

Google Scholar

[41] T. Seckin, B. Cetinkaya and I. Ozdemir: Polym. Bull. (Berlin)Vol. 44 (2000), p.47.

Google Scholar

[42] A.C. Pierre, Biocatal. Biotransformations. Vol 22 (2004), p.145.

Google Scholar

[43] D.C.M. Dutoit, M.A. Reiche, and A. Baiker: Appl. Catal. B: Environ. Vol. 13 (1997), p.275.

Google Scholar

[44] C. Hu, Q. Zhu, Z. Jiang: Powder Technol. Vol. 194 (2009), p.109.

Google Scholar

[45] P. Mars and D.W. van Krevelen: Chem. Eng. Sci. Vol. 3 (1954), p.41.

Google Scholar

[46] J. -H Kim, D.J. Suh, T. -J. Park, K. -L Kim: Appl. Catal. A: Vol. 197 (2000), p.191.

Google Scholar

[47] J.M. Tatibouët: Appl. Catal. A: Gen. Vol. 148 (1997), p.213.

Google Scholar

[48] M. Schneider, U. Scharf, A. Wokaun and A. Baiker: J. Catal. Vol. 150 (1994), p.284.

Google Scholar

[49] C. Krause, S. Klein, J. Kärger and W.F. Maier: Adv. Mater. Vol. 8 (1996), p.912.

Google Scholar