Crystallization of Gahnite in CMAS Glass Forming System - Mechanism and Process Kinetics

Article Preview

Abstract:

The crystallisation mechanism of glass-ceramic materials from a CMAS group Al0.37B0.34Fe0.01Mg0.02Zn0.29Ca0.05Si0.78O3 was tested under non-isothermal conditions by the DTA method. Glass-ceramic material of two-phase composition with precipitation of crystallites from islet silicates Zn2SiO4 and a crystalline phase from a spinel group, gahnite ZnAl2O4 was obtained in the system under investigation. Activation energy of a crystallization process Ea was determined and a crystal growth morphology parameter n was computed. It was revealed that in the test material from a CMAS group one could obtain the crystalline phase in the form of ghanite as a result of a controlled process of crystallization. The occurrence of a spinel phase caused the obtained glass-ceramic material had higher fracture toughness (KIC) than material from a CMAS group, containing pyroxene crystalline phases typical for this system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-64

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Yekta, B. Eftekhari, P. Alizadech, L. Rezazadeh: Synthesis of glass-ceramic glazes in the ZnO-Al2O3-SiO2-ZrO2 system, Journal of the European Ceramic Society 27(2007) 2311-2315.

DOI: 10.1016/j.jeurceramsoc.2006.08.009

Google Scholar

[2] G.H. Chen, X.Y. Liu: Sintering, crystallization and properties of MgO-Al2O3-SiO2 system glass-ceramics containing ZnO, Journal of Alloys and Compounds, 431 (2007) 282-286.

DOI: 10.1016/j.jallcom.2006.05.060

Google Scholar

[3] G. Patridge: An overview of glass ceramics: Part 1- development and principal bulk applications, Glass Technology, 1994, 35 (3)116-127.

Google Scholar

[4] H. Scheidler, E. Rodek: Li2O-Al2O3-SiO2 glass-ceramics, Ceram Bull, 1989, 68(11) 1926-(1930).

Google Scholar

[5] M. Yousefi, P. Alizadeh, B.E. Yekta, F. Molaie, N. Ghafoorian, M. Montazerian: Synthesis and characterization of diopside glass-ceramic matrix composite reinforced with aluminium titanate, Ceramics Interntional 35 (2009) 1447-1452.

DOI: 10.1016/j.ceramint.2008.07.020

Google Scholar

[6] D. Herman, J. Krzos: Influence of vitrified bond structure on radial wear of cBN grinding wheel, Journal of Materials Processing Technology, 209 (2009), 5377-5386.

DOI: 10.1016/j.jmatprotec.2009.03.013

Google Scholar

[7] K. Matusita, S. Sakka: Kinetic study on crystallization of glass by differential thermal analysis-Criterion on application of Kissinger plot, J. Non-Cryst. Solids, 38&39 (1980) 741-746.

DOI: 10.1016/0022-3093(80)90525-6

Google Scholar

[8] J.A. Augis, J.E. Benett: Calculation of the Avrami parameters for heterogeneus solid state reactions using a modification on the Kissinger method, J. Therm. Anal. (1978)13, 283-292.

DOI: 10.1007/bf01912301

Google Scholar

[9] Y.K. Lee, S.Y. Choi: Controlled nucleation and crystallization in Fe2O3-CaO-SiO2 glass, Journal of Materials Science 32 (1997) 431-436.

Google Scholar

[10] L. Lefebvre, J. Chevalier, L. Gremillard, R. Zentai, G. Thollet, D. Bernache-Assolant, A. Govin: Structural transformations of bioactive glass 45S5 with thermal treatments, Acta Materialia 56 (2007) 3305-3313.

DOI: 10.1016/j.actamat.2007.01.029

Google Scholar

[11] E. Tkalcec, S. Kurajica, H. Ivankovic: Crystallization behaviour and microstructure of powerded and bulk ZnO-Al2O3-SiO2 glass-ceramics, Journal of Non-Crystalline Solids 351 (2005) 149-157.

DOI: 10.1016/j.jnoncrysol.2004.09.024

Google Scholar