Role of Alkaline Cations on Geomaterial Foams

Article Preview

Abstract:

The synthesis of geopolymers based on alkaline polysialate, was achieved at slightly elevated temperature, by alkaline activation of raw minerals and industrial waste. The materials were prepared from a solution containing dehydroxylated kaolinite and alkaline hydroxide pellets dissolved in potassium or sodium silicate. Then the mixture was transferred to a polyethylene mould sealed with a top and placed in an oven at 70°C during 24 hours. The addition of an industrial waste, silica fume, leads to the formation of an in-situ inorganic foam. Whatever the alkaline cation, foam formation occurs. The properties depend on the viscosity of silicate precursors due to the amount of water and to the size of alkaline.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-106

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Davidovits, Chemistry and Applications, 19-36 (2008).

Google Scholar

[2] H. Xu, Geopolymerisation of Aluminosilicate Minerals, PhD Thesis, Department of Chemical Engineering, University of Melbourne, Australia, (2001).

Google Scholar

[3] M.W. Grutzeck and D. D Siemer, Zeolithes Synthesised from Class F Fly Ash and Sodium Aluminate Slurry, J. Am. Ceram. Soc., 80 (9), 2449-2458, (1997).

DOI: 10.1111/j.1151-2916.1997.tb03143.x

Google Scholar

[4] Z. Li, Y. Zhang and X. Zhou, Short Fiber Reinforced Geopolymer Composites Manufactured by Extrusion, Journal Materials in Civil Engineering, vol 17(6), 624-631, (2005).

DOI: 10.1061/(asce)0899-1561(2005)17:6(624)

Google Scholar

[5] J. P. Wu, A.R. Boccaccini, P.D. Lee and R.D. Rawlings, Thermal and Mechanical Properties of a Foamed Glass Ceramic Material Produced from Silicate Waste, Eur. J. Glass Sci. Technol. A, 48 (3), 133-141, (2007).

Google Scholar

[6] V. Barbosa and K. Mackensie, Synthesis and Thermal Behaviour of Potassium Sialate, Mater. Letters, 57, 1477-1482, (2003).

DOI: 10.1016/s0167-577x(02)01009-1

Google Scholar

[7] J.L. Bell and W.M. Kriven, Preparation of ceramic foams from metakaolin-based geopolymer gels, Ceramic Engineering and Science Proceedings, 29 (10), 97-112, (2009).

DOI: 10.1002/9780470456200.ch10

Google Scholar

[8] T. Jettner, H. Moertel, V. Svinka and R. Svinka, Structure of kaoline-alumina based foam for high temperature applications, J. of European Ceram. Soc., 27, 1435-1441, (2007).

DOI: 10.1016/j.jeurceramsoc.2006.04.029

Google Scholar

[9] H.R. Fernandes, D.U. Tulyaganov, J.M.F. Ferreira, Preparation and characterization of foams from sheet glass and fly ash using carbonates as foaming agents, Ceram. Inter., 35, 229-235, (2009).

DOI: 10.1016/j.ceramint.2007.10.019

Google Scholar

[10] P. Duxson, G. C. Lukey, and S. J. Van Deventer, Thermal Conductivity of Metakaolin Geopolymers Used as a First Approximation for Determining Gel Interconnectivity, Ind. Eng. Chem. Res., 45, 7781-7788, (2006).

DOI: 10.1021/ie060187o

Google Scholar

[11] E. Prud'homme, P. Michaud, E. Joussein, C. Peyratout, A. Smith, S. Arri-Clacens, J.M. Clacens, S. Rossignol, Silica fume as porogent agent in geo-materials at low temperature, Journal of the European Ceramic Society, 30, 1641-1648 (2010).

DOI: 10.1016/j.jeurceramsoc.2010.01.014

Google Scholar

[12] J. Davidovits, Synthetic Mineral Polymer Compound of the Silicoaluminates Family and Preparation Process, US Patent, 4, 472, 199, (1984).

Google Scholar

[13] P. Innocenzi, Infrared Spectroscopy of Sol-Gel Derived Silica-Based Films: a SpectraMicrostructure Overview, Journal of non crystalline solids, 316, 309-319, (2003).

DOI: 10.1016/s0022-3093(02)01637-x

Google Scholar

[14] M. Criado, A. Polomo and A. Fernandez-Jiménez, Alkali Activation of Fly Ashes, Part 1: Effect of Curing Conditions on the Carbonation of the Reaction Products, Fuel, 84, 2048-2054, (2005).

DOI: 10.1016/j.fuel.2005.03.030

Google Scholar

[15] J. Davidovits, Scientific Tools, X-rays, FTIR, NMR, Geopolymer: Chemistry and Applications, 61-76, (2008).

Google Scholar

[16] W. K. W. Lee and J. S. J. Van Deventer, Use of Infrared Spectroscopy to Study Geopolymerization of Heterogeneous Amorphous Aluminosilicate, Langmuir, 19, 8726-8734, (2003).

DOI: 10.1021/la026127e

Google Scholar

[17] C. A. Rees, J. L. Provis, G. C. Luckey and J. S. J. Van Deventer, Attenuated Total Reflectance Fourier Transform Infrared Analysis of Fly Ash Geopolymer Gel Aging, Langmuir, 23, 81708179, (2007).

DOI: 10.1021/la700713g

Google Scholar

[18] T. Uchino, T. Sakka, K. Hotta and M. Iwasaki, Attenuated Total Reflectance Fourier-Transform Infrared Spectra of a Hydrated Sodium Silicate Glass, J. Am. Ceram. Soc., 72 (11), 2173-2175, (1989).

DOI: 10.1111/j.1151-2916.1989.tb06051.x

Google Scholar

[19] Y.I. Jialiang, IR Studies of Alkali Silicate Glasses, Journal of Non-Crystalline Solids, 52, 211215 (1982).

Google Scholar