Modeling of Shape-Memory Recovery in Crosslinked Semicrystalline Polymers

Article Preview

Abstract:

In present work a new theoretical approach based on the modified three-element Eyring-Halsey mechanical model was used for the derivation of an equation, which describes the thermally-induced recovery of preloaded covalently crosslinked polymer. This approach takes into account the influence of crystallizable polymer network as well as of entangled slipped molecular chains. Modeling of the temperature dependences of shape-memory (SM) recovery strain and SM recovery rate detected at constant heating rate has been performed for three types of polyethylene with sufficiently different crystallinity and crosslink density at programming strain of 100%. The results of modeling agree well with the experimental data. The values of material parameters determined by fitting correspond satisfactorily to the estimations existing in literature. It is shown that the contribution of the entangled slipped molecules to the total stored SM strain increases with increasing degree of branching and crosslink density. The physical sense of main fitting parameters and their dependences on the material constants such as crystallinity are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

319-324

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Tobushi, K. Okumura, S. Hayashi, N. Ito, Thermomechanical constitutive model of shape memory polymer, Mech. Mater. 33 (2001) 545-554.

DOI: 10.1016/s0167-6636(01)00075-8

Google Scholar

[2] G. Barot, I.J. Rao, K.R. Rajagopal, A thermodynamic framework for the modeling of crystallizable shape memory polymers, Int. J. Eng. Sci. 46 (2008) 325-351.

DOI: 10.1016/j.ijengsci.2007.11.008

Google Scholar

[3] H.J. Qi, T.D. Nguyen, F. Castro, C.M. Yakacki, R. Shandas, Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers, J. Mech. Phys. Solids 56 (2008) 1730-1751.

DOI: 10.1016/j.jmps.2007.12.002

Google Scholar

[4] J.M. Husson, F. Dubois, N. Sauvat, A finite element model for shape memory behavior, Mech. Time-Depend. Mat. 15 (2011) 213–237.

DOI: 10.1007/s11043-011-9134-0

Google Scholar

[5] M. Böl, S. Reese, Micromechanical modelling of shape memory polymers, Adv. Sci. Tech. 54 (2008) 137-142.

Google Scholar

[6] Y. Liu, K. Gall, M.L. Dunn, A.R. Greenberg, J. Diani, Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling, Int. J. Plasticity 22 (2006) 279–313.

DOI: 10.1016/j.ijplas.2005.03.004

Google Scholar

[7] H.A. Khonakdar, S.H. Jafari, S. Rasouli, J. Morshedian, H. Abedini, Investigation and modeling of temperature dependence recovery behavior of shape-memory crosslinked polyethylene, Macromol. Theor. Simul. 16 (2007) 43–52.

DOI: 10.1002/mats.200600041

Google Scholar

[8] Z.D. Wang, D.F. Li, Z.Y. Xiong, R.N. Chang, Modeling thermomechanical behaviors of shape memory polymer, J. Appl. Polym. Sci. 113 (2009) 651–656.

DOI: 10.1002/app.29656

Google Scholar

[9] A.S. Krausz and H. Eyring, Deformation Kinetics, Wiley-Interscience, New York, 1975.

Google Scholar

[10] A. Ziabicki, Theoretical analysis of oriented and non isothermal crystallization I. Phenomenological considerations. Isothermal crystallization accompanied by simultaneous orientation or disorientation, Colloid Polym. Sci. 252 (1974) 207-221.

DOI: 10.1007/bf01638101

Google Scholar

[11] L.R.G. Treloar, The Physics of Rubber Elasticity, Oxford University Press, Oxford, 1975.

Google Scholar

[12] G. Heinrich, E. Straube, G. Helmis, Zur Theorie der Konfigurationsbehinderungen in polymeren Netzwerken II. Spannungs-Deformations-Verhalten Kautschukelastischer Netzwerke, Plaste Kautsch. 26 (1979) 561-562.

DOI: 10.1515/zpch-1979-0197

Google Scholar

[13] T. Ozawa, Kinetics of non-isothermal crystallization, Polymer 12 (1971) 150-158.

DOI: 10.1016/0032-3861(71)90041-3

Google Scholar

[14] I.S. Kolesov, H.-J. Radusch, Multiple shape-memory behavior and thermal-mechanical properties of peroxide cross-linked blends of linear and short-chain branched polyethylenes, Express Polym. Lett. 7 (2008) 461–473.

DOI: 10.3144/expresspolymlett.2008.56

Google Scholar

[15] I.S. Kolesov, K. Kratz, A. Lendlein, H.-J. Radusch, Kinetics and dynamics of thermally-induced shape-memory behavior of crosslinked short-chain branched polyethylenes, Polymer (50) 2009 5490–5498.

DOI: 10.1016/j.polymer.2009.09.062

Google Scholar

[16] I. Kolesov, O. Dolynchuk, H.-J. Radusch, Simulation and experimental investigation of shape-memory recovery of polyethylenes with different degree of branching and crosslink density, in: CD Proceedings of 14th International Conference Polymeric Materials, Halle (Saale), 2010.

Google Scholar