[1]
K. Ogata, Ingeniería de control moderna, third ed., Prentice-Hall Hispanoamericana, México, (1998).
Google Scholar
[2]
K.J. Aström, B. Wittenmark, Adaptative control, second ed., Addison Wesley, Reading, (1995).
Google Scholar
[3]
J. -J.E. Slotine, W. Li, Applied nonlinear control, first ed., Prentice-Hall, Englewood Cliffs, (1991).
Google Scholar
[4]
T.F. Otero, J.G. Martinez, J. Arias-Pardilla, Biomimetic electrochemistry from conducting polymers. A review: Artificial muscles, smart membranes, smart drug delivery and computer/neuron interfaces, Electrochimica Acta (2012).
DOI: 10.1016/j.electacta.2012.03.097
Google Scholar
[5]
T.F. Otero, M.T. Cortes, Artificial muscles with tactile sensitivity, Adv. Mater. 15 (2003) 279-282.
DOI: 10.1002/adma.200390066
Google Scholar
[6]
J. Arias-Pardilla, T.F. Otero, J.G. Martinez, Y.A. Ismail, Biomimetic Sensing-Actuators Based on Conducting Polymers, in: A.J. Motheo (Ed. ), Aspects on fundaments and applications of conducting polymers, first ed., Intech, Rijeka, 2012, pp.87-112.
DOI: 10.5772/29348
Google Scholar
[7]
P. Verge, P.H. Aubert, F. Vidal, L. Sauques, F. Tran-Van, S. Peralta, D. Teyssie, C. Chevrot, New Prospects in the Conception of IR Electro-Tunable Devices: The Use of Conducting Semi-Interpenetrating Polymer Network Architecture, Chem. Mater. 22 (2010).
DOI: 10.1021/cm100736y
Google Scholar
[8]
J.A. Irvin, D.J. Irvin, J.D. Strenger-Smith, Electroactive polymers for batteries and supercapacitors, in: T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds (Eds. ), Handbook of conducting polymers, CRC Press, Boca Raton, 2007, p.9. 1-9. 29.
Google Scholar
[9]
G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources 196 (2011) 1-12.
DOI: 10.1016/j.jpowsour.2010.06.084
Google Scholar
[10]
M.R. Abidian, D.H. Kim, D.C. Martin, Conducting-Polymer Nanotubes for Controlled Drug Release, Adv. Mater. 18 (2006) 405-409.
DOI: 10.1002/adma.200501726
Google Scholar
[11]
D. Svirskis, B.E. Wright, J. Travas-Sejdic, A. Rodgers, S. Garg, Evaluation of physical properties and performance over time of an actuating polypyrrole based drug delivery system, Sensor Actuat. B-Chem. 151 (2010) 97-102.
DOI: 10.1016/j.snb.2010.09.042
Google Scholar
[12]
K.A. Ludwig, J.D. Uram, J. Yang, D.C. Martin, D.R. Kipke, Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3, 4-ethylenedioxythiophene) (PEDOT) film, J. Neural Eng. 3 (2006) 59-70.
DOI: 10.1088/1741-2560/3/1/007
Google Scholar
[13]
C.E. Schmidt, V.R. Shastri, J.P. Vacanti, R. Langer, Stimulation of neurite outgrowth using an electrically conducting polymer, P. Natl. Acad. Sci. USA 94 (1997) 8948-8953.
DOI: 10.1073/pnas.94.17.8948
Google Scholar
[14]
M.J. Ariza, T.F. Otero, Nitrate and chloride transport through a smart membrane, J. Membrane Sci. 290 (2007) 241-249.
DOI: 10.1016/j.memsci.2006.12.040
Google Scholar
[15]
J. Pellegrino, The use of conducting polymers in membrane-based separations - A review and recent developments, Ann. N. Y. Acad. Sci. 984 (2003) 289-305.
Google Scholar
[16]
J. Isaksson, C. Tengstedt, M. Fahlman, N. Robinson, M. Berggren, Solid-state organic electronic wettability switch, Adv. Mater. 16 (2004) 316-320.
DOI: 10.1002/adma.200306131
Google Scholar
[17]
T. Ahuja, I.A. Mir, D. Kumar, Rajesh, Biomolecular immobilization on conducting polymers for biosensing applications, Biomaterials 28 (2007) 791-805.
DOI: 10.1016/j.biomaterials.2006.09.046
Google Scholar
[18]
J. Arias-Pardilla, C. Plesse, A. Khaldi, F. Vidal, C. Chevrot, T. Otero, Self-supported semi-interpenetrating polymer networks as reactive ambient sensors, J. Electroanal. Chem. 652 (2011) 37-43.
DOI: 10.1016/j.jelechem.2010.12.002
Google Scholar
[19]
Y.A. Ismail, J.G. Martinez, A.S. Al Harrasi, S.J. Kim, T.F. Otero, Sensing characteristics of a conducting polymer/hydrogel hybrid microfiber artificial muscle, Sensor Actuat. B-Chem. 160 (2011) 1180-1190.
DOI: 10.1016/j.snb.2011.09.044
Google Scholar
[20]
T.F. Otero, Soft, wet, and reactive polymers. Sensing artificial muscles and conformational energy, J. Mater. Chem. 19 (2009) 681-689.
DOI: 10.1039/b809485c
Google Scholar
[21]
L. Valero Conzuelo, J. Arias-Pardilla, J.V. Cauich-Rodriguez, M. fra Smit, T. Fernandez Otero, Sensing and Tactile Artificial Muscles from Reactive Materials, Sensors 10 (2010) 2638-2674.
DOI: 10.3390/s100402638
Google Scholar
[22]
L. Valero, J. Arias-Pardilla, J. Cauich-Rodriguez, M. Smit, T. Otero, Characterization of the movement of polypyrrole-dodecylbenzenesulfonate-perchlorate/tape artificial muscles. Faradaic control of reactive artificial molecular motors and muscles, Electrochim. Acta 56 (2011).
DOI: 10.1016/j.electacta.2010.11.058
Google Scholar
[23]
L. Valero, J. Arias-Pardilia, M. Smit, J. Cauich-Rodriguez, T.F. Otero, Polypyrrole free-standing electrodes sense temperature or current during reaction, Polym. Int. 59 (2010) 337-342.
DOI: 10.1002/pi.2750
Google Scholar
[24]
F. Garcia-Cordova, L. Valero, Y.A. Ismail, T. Fernandez Otero, Biomimetic polypyrrole based all three-in-one triple layer sensing actuators exchanging cations, J. Mater. Chem. 21 (2011) 17265-17272.
DOI: 10.1039/c1jm13374h
Google Scholar
[25]
P. Gimenez, K. Mukai, K. Asaka, K. Hata, H. Oike, T. Otero, Capacitive and faradic charge components in high-speed carbon nanotube actuator, Electrochim. Acta 60 (2012) 177-183.
DOI: 10.1016/j.electacta.2011.11.032
Google Scholar
[26]
K. Mukai, K. Asaka, K. Hata, T. Fernandez Otero, H. Oike, High-Speed Carbon Nanotube Actuators Based on an Oxidation/Reduction Reaction, Chem. -Eur. J. 17 (2011) 10965-10971.
DOI: 10.1002/chem.201003641
Google Scholar
[27]
J.G. Martinez, T. Sugino, K. Asaka, T.F. Otero, Electrochemistry of Carbon Nanotubes: Reactive Processes, Dual Sensing-Actuating Properties and Devices, ChemPhysChem (2012), In Press, DOI: 10. 1002/cphc. 201100931.
DOI: 10.1002/cphc.201100931
Google Scholar
[28]
Y. Huang, J. Liang, Y. Chen, The application of graphene based materials for actuators, J. of Mater. Chem. 22 (2012) 3671-3679.
Google Scholar
[29]
K.J. Vetter, Bruckenstein, S., Howard, B., (Eds. ), Electrochemical Kinetics. Theoretical Aspects, first ed., Academic Press Inc., New York, (1967).
Google Scholar
[30]
T.F. Otero, J.J. Sanchez, J.G. Martinez, Biomimetic Dual Sensing-Actuators Based on Conducting Polymers. Galvanostatic Theoretical Model for Actuators Sensing Temperature, The J. Phys. Chem. B 116 (2012) 5279-5290.
DOI: 10.1021/jp300290s
Google Scholar
[31]
T.F. Otero, H. Grande, Thermally enhanced conformational relaxation during electrochemical oxidation of polypyrrole, J. Electroanal. Chem. 414 (1996) 171-176.
DOI: 10.1016/0022-0728(96)04686-4
Google Scholar
[32]
T.F. Otero, H. Grande, J. Rodriguez, Role of conformational relaxation on the voltammetric behavior of polypyrrole. Experiments and mathematical model, J. Phys. Chem. B 101 (1997) 8525-8533.
DOI: 10.1021/jp9714633
Google Scholar
[33]
T. Otero, R. Abadias, Potentiostatic oxidation of poly(3-methylthiophene): Influence of the prepolarization time at cathodic potentials on the kinetics, J. Electroanal. Chem. 618 (2008) 39-44.
DOI: 10.1016/j.jelechem.2008.02.019
Google Scholar
[34]
T.F. Otero, F. Santos, Polythiophene oxidation: Rate coefficients, activation energy and conformational energies, Electrochim. Acta 53 (2008) 3166-3174.
DOI: 10.1016/j.electacta.2007.10.072
Google Scholar
[35]
T.F. Otero, M. Marquez, I.J. Suarez, Polypyrrole: Diffusion coefficients and degradation by overoxidation, J. Phys. Chem. B 108 (2004) 15429-15433.
DOI: 10.1021/jp0490608
Google Scholar
[36]
T.F. Otero, H. Grande, J. Rodriguez, A conformational relaxation approach to polypyrrole voltammetry, Synthetic Met. 85 (1997) 1077-1078.
DOI: 10.1016/s0379-6779(97)80154-3
Google Scholar
[37]
T.F. Otero, M.T. Cortes, Artificial muscle: movement and position control, Chem. Commun. (2004) 284-285.
Google Scholar
[38]
T.F. Otero, J.M. Sansinena, Bilayer dimensions and movement in artificial muscles, Bioelectroch. Bioener. 42 (1997) 117-122.
Google Scholar
[39]
T. Otero, M. Cortes, G. Arenas, V, Linear movements from two bending triple-layers, Electrochim. Acta 53 (2007) 1252-1258.
DOI: 10.1016/j.electacta.2007.01.081
Google Scholar
[40]
T.F. Otero, M.T. Cortes, A sensing muscle, Sensor Actuat. B-Chem. 96 (2003) 152-156.
Google Scholar
[41]
T.F. Otero, E. Angulo, J. Rodriguez, C. Santamaria, Electrochemomechanical Properties from A Bilayer - Polypyrrole Nonconducting and Flexible Material Artificial Muscle, J. Electroanal. Chem. 341 (1992) 369-375.
DOI: 10.1016/0022-0728(92)80495-p
Google Scholar
[42]
T.F. Otero, J.G. Martinez, Activation energy for polypyrrole oxidation: film thickness influence, J. Solid State Electr. 15 (2011) 1169-1178.
DOI: 10.1007/s10008-010-1170-1
Google Scholar
[43]
I.J. Suarez, T.F. Otero, M. Marquez, Diffusion coefficients in swelling polypyrrole: ESCR and Cottrell models, J. Phys. Chem. B 109 (2005) 1723-1729.
DOI: 10.1021/jp046051q
Google Scholar
[44]
Y. Berdichevsky, Y.H. Lo, Polypyrrole nanowire actuators, Adv. Mater. 18 (2006) 122-125.
DOI: 10.1002/adma.200501621
Google Scholar
[45]
X. He, C. Li, F. Chen, G. Shi, Polypyrrole microtubule actuators for seizing and transferring microparticles, Adv. Funct. Mater. 17 (2007) 2911-2917.
DOI: 10.1002/adfm.200600869
Google Scholar
[46]
G.M. Spinks, L. Liu, G.G. Wallace, D.Z. Zhou, Strain response from polypyrrole actuators under load, Adv. Funct. Mater. 12 (2002) 437-440.
DOI: 10.1002/1616-3028(20020618)12:6/7<437::aid-adfm437>3.0.co;2-i
Google Scholar
[47]
G.M. Spinks, G.G. Wallace, L. Liu, D. Zhou, Conducting polymers electromechanical actuators and strain sensors, Macromol. Symp. 192 (2003) 161-169.
DOI: 10.1002/masy.200390025
Google Scholar
[48]
G.M. Spinks, T.E. Campbell, G.G. Wallace, Force generation from polypyrrole actuators, Smart Mater. Struct. 14 (2005) 406-412.
DOI: 10.1088/0964-1726/14/2/015
Google Scholar
[49]
Q.B. Pei, O. Inganas, Electrochemical Applications of the Bending Beam Method . 1. Mass-Transport and Volume Changes in Polypyrrole During Redox, J. Phys, Chem, 96 (1992) 10507-10514.
DOI: 10.1021/j100204a071
Google Scholar
[50]
Q.B. Pei, O. Inganas, Electrochemical Applications of the Bending Beam Method . 2. Electroshrinking and Slow Relaxation in Polypyrrole, J. Phys. Chem. 97 (1993) 6034-6041.
DOI: 10.1021/j100124a041
Google Scholar
[51]
Q.B. Pei, O. Inganas, Electrochemical Applications of the Bending Beam Method, A Novel Way to Study Ion-Transport in Electroactive Polymers, Solid State Ionics 60 (1993) 161-166.
DOI: 10.1016/0167-2738(93)90291-a
Google Scholar