One Actuator and Several Sensors in One Device with only Two Connecting Wires: Mimicking Muscle/Brain Feedback

Article Preview

Abstract:

Artificial muscles based on conducting polymers, fullerene derivatives, carbon nanotubes, graphenes or other carbon derivative molecular structures are electrochemomechanical actuators. Electrochemical reactions drive most of the volume variation and the concomitant actuation. So under flow of a constant current, any working or surrounding variable influencing the reaction rate will be sensed by the muscle potential, or by the consumed energy, evolution during actuation. Experimental results and full theoretical description will be presented. The muscle potential is a well defined function of: driving current, volume variation (external pressure or hanged masses), temperature and electrolyte concentration. While working artificial muscles detect any change of whatever of those variables by changing either its potential or its consumed energy evolution. Experimental changes fit those predicted by the theoretical description. Only two connecting wires contain, simultaneously, actuating (current) and sensing (potential) signals. Those constitute new feedback intelligent and biomimetic devices opening new technological borders and mimicking natural muscles/brain communication.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-25

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Ogata, Ingeniería de control moderna, third ed., Prentice-Hall Hispanoamericana, México, (1998).

Google Scholar

[2] K.J. Aström, B. Wittenmark, Adaptative control, second ed., Addison Wesley, Reading, (1995).

Google Scholar

[3] J. -J.E. Slotine, W. Li, Applied nonlinear control, first ed., Prentice-Hall, Englewood Cliffs, (1991).

Google Scholar

[4] T.F. Otero, J.G. Martinez, J. Arias-Pardilla, Biomimetic electrochemistry from conducting polymers. A review: Artificial muscles, smart membranes, smart drug delivery and computer/neuron interfaces, Electrochimica Acta (2012).

DOI: 10.1016/j.electacta.2012.03.097

Google Scholar

[5] T.F. Otero, M.T. Cortes, Artificial muscles with tactile sensitivity, Adv. Mater. 15 (2003) 279-282.

DOI: 10.1002/adma.200390066

Google Scholar

[6] J. Arias-Pardilla, T.F. Otero, J.G. Martinez, Y.A. Ismail, Biomimetic Sensing-Actuators Based on Conducting Polymers, in: A.J. Motheo (Ed. ), Aspects on fundaments and applications of conducting polymers, first ed., Intech, Rijeka, 2012, pp.87-112.

DOI: 10.5772/29348

Google Scholar

[7] P. Verge, P.H. Aubert, F. Vidal, L. Sauques, F. Tran-Van, S. Peralta, D. Teyssie, C. Chevrot, New Prospects in the Conception of IR Electro-Tunable Devices: The Use of Conducting Semi-Interpenetrating Polymer Network Architecture, Chem. Mater. 22 (2010).

DOI: 10.1021/cm100736y

Google Scholar

[8] J.A. Irvin, D.J. Irvin, J.D. Strenger-Smith, Electroactive polymers for batteries and supercapacitors, in: T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds (Eds. ), Handbook of conducting polymers, CRC Press, Boca Raton, 2007, p.9. 1-9. 29.

Google Scholar

[9] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources 196 (2011) 1-12.

DOI: 10.1016/j.jpowsour.2010.06.084

Google Scholar

[10] M.R. Abidian, D.H. Kim, D.C. Martin, Conducting-Polymer Nanotubes for Controlled Drug Release, Adv. Mater. 18 (2006) 405-409.

DOI: 10.1002/adma.200501726

Google Scholar

[11] D. Svirskis, B.E. Wright, J. Travas-Sejdic, A. Rodgers, S. Garg, Evaluation of physical properties and performance over time of an actuating polypyrrole based drug delivery system, Sensor Actuat. B-Chem. 151 (2010) 97-102.

DOI: 10.1016/j.snb.2010.09.042

Google Scholar

[12] K.A. Ludwig, J.D. Uram, J. Yang, D.C. Martin, D.R. Kipke, Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3, 4-ethylenedioxythiophene) (PEDOT) film, J. Neural Eng. 3 (2006) 59-70.

DOI: 10.1088/1741-2560/3/1/007

Google Scholar

[13] C.E. Schmidt, V.R. Shastri, J.P. Vacanti, R. Langer, Stimulation of neurite outgrowth using an electrically conducting polymer, P. Natl. Acad. Sci. USA 94 (1997) 8948-8953.

DOI: 10.1073/pnas.94.17.8948

Google Scholar

[14] M.J. Ariza, T.F. Otero, Nitrate and chloride transport through a smart membrane, J. Membrane Sci. 290 (2007) 241-249.

DOI: 10.1016/j.memsci.2006.12.040

Google Scholar

[15] J. Pellegrino, The use of conducting polymers in membrane-based separations - A review and recent developments, Ann. N. Y. Acad. Sci. 984 (2003) 289-305.

Google Scholar

[16] J. Isaksson, C. Tengstedt, M. Fahlman, N. Robinson, M. Berggren, Solid-state organic electronic wettability switch, Adv. Mater. 16 (2004) 316-320.

DOI: 10.1002/adma.200306131

Google Scholar

[17] T. Ahuja, I.A. Mir, D. Kumar, Rajesh, Biomolecular immobilization on conducting polymers for biosensing applications, Biomaterials 28 (2007) 791-805.

DOI: 10.1016/j.biomaterials.2006.09.046

Google Scholar

[18] J. Arias-Pardilla, C. Plesse, A. Khaldi, F. Vidal, C. Chevrot, T. Otero, Self-supported semi-interpenetrating polymer networks as reactive ambient sensors, J. Electroanal. Chem. 652 (2011) 37-43.

DOI: 10.1016/j.jelechem.2010.12.002

Google Scholar

[19] Y.A. Ismail, J.G. Martinez, A.S. Al Harrasi, S.J. Kim, T.F. Otero, Sensing characteristics of a conducting polymer/hydrogel hybrid microfiber artificial muscle, Sensor Actuat. B-Chem. 160 (2011) 1180-1190.

DOI: 10.1016/j.snb.2011.09.044

Google Scholar

[20] T.F. Otero, Soft, wet, and reactive polymers. Sensing artificial muscles and conformational energy, J. Mater. Chem. 19 (2009) 681-689.

DOI: 10.1039/b809485c

Google Scholar

[21] L. Valero Conzuelo, J. Arias-Pardilla, J.V. Cauich-Rodriguez, M. fra Smit, T. Fernandez Otero, Sensing and Tactile Artificial Muscles from Reactive Materials, Sensors 10 (2010) 2638-2674.

DOI: 10.3390/s100402638

Google Scholar

[22] L. Valero, J. Arias-Pardilla, J. Cauich-Rodriguez, M. Smit, T. Otero, Characterization of the movement of polypyrrole-dodecylbenzenesulfonate-perchlorate/tape artificial muscles. Faradaic control of reactive artificial molecular motors and muscles, Electrochim. Acta 56 (2011).

DOI: 10.1016/j.electacta.2010.11.058

Google Scholar

[23] L. Valero, J. Arias-Pardilia, M. Smit, J. Cauich-Rodriguez, T.F. Otero, Polypyrrole free-standing electrodes sense temperature or current during reaction, Polym. Int. 59 (2010) 337-342.

DOI: 10.1002/pi.2750

Google Scholar

[24] F. Garcia-Cordova, L. Valero, Y.A. Ismail, T. Fernandez Otero, Biomimetic polypyrrole based all three-in-one triple layer sensing actuators exchanging cations, J. Mater. Chem. 21 (2011) 17265-17272.

DOI: 10.1039/c1jm13374h

Google Scholar

[25] P. Gimenez, K. Mukai, K. Asaka, K. Hata, H. Oike, T. Otero, Capacitive and faradic charge components in high-speed carbon nanotube actuator, Electrochim. Acta 60 (2012) 177-183.

DOI: 10.1016/j.electacta.2011.11.032

Google Scholar

[26] K. Mukai, K. Asaka, K. Hata, T. Fernandez Otero, H. Oike, High-Speed Carbon Nanotube Actuators Based on an Oxidation/Reduction Reaction, Chem. -Eur. J. 17 (2011) 10965-10971.

DOI: 10.1002/chem.201003641

Google Scholar

[27] J.G. Martinez, T. Sugino, K. Asaka, T.F. Otero, Electrochemistry of Carbon Nanotubes: Reactive Processes, Dual Sensing-Actuating Properties and Devices, ChemPhysChem (2012), In Press, DOI: 10. 1002/cphc. 201100931.

DOI: 10.1002/cphc.201100931

Google Scholar

[28] Y. Huang, J. Liang, Y. Chen, The application of graphene based materials for actuators, J. of Mater. Chem. 22 (2012) 3671-3679.

Google Scholar

[29] K.J. Vetter, Bruckenstein, S., Howard, B., (Eds. ), Electrochemical Kinetics. Theoretical Aspects, first ed., Academic Press Inc., New York, (1967).

Google Scholar

[30] T.F. Otero, J.J. Sanchez, J.G. Martinez, Biomimetic Dual Sensing-Actuators Based on Conducting Polymers. Galvanostatic Theoretical Model for Actuators Sensing Temperature, The J. Phys. Chem. B 116 (2012) 5279-5290.

DOI: 10.1021/jp300290s

Google Scholar

[31] T.F. Otero, H. Grande, Thermally enhanced conformational relaxation during electrochemical oxidation of polypyrrole, J. Electroanal. Chem. 414 (1996) 171-176.

DOI: 10.1016/0022-0728(96)04686-4

Google Scholar

[32] T.F. Otero, H. Grande, J. Rodriguez, Role of conformational relaxation on the voltammetric behavior of polypyrrole. Experiments and mathematical model, J. Phys. Chem. B 101 (1997) 8525-8533.

DOI: 10.1021/jp9714633

Google Scholar

[33] T. Otero, R. Abadias, Potentiostatic oxidation of poly(3-methylthiophene): Influence of the prepolarization time at cathodic potentials on the kinetics, J. Electroanal. Chem. 618 (2008) 39-44.

DOI: 10.1016/j.jelechem.2008.02.019

Google Scholar

[34] T.F. Otero, F. Santos, Polythiophene oxidation: Rate coefficients, activation energy and conformational energies, Electrochim. Acta 53 (2008) 3166-3174.

DOI: 10.1016/j.electacta.2007.10.072

Google Scholar

[35] T.F. Otero, M. Marquez, I.J. Suarez, Polypyrrole: Diffusion coefficients and degradation by overoxidation, J. Phys. Chem. B 108 (2004) 15429-15433.

DOI: 10.1021/jp0490608

Google Scholar

[36] T.F. Otero, H. Grande, J. Rodriguez, A conformational relaxation approach to polypyrrole voltammetry, Synthetic Met. 85 (1997) 1077-1078.

DOI: 10.1016/s0379-6779(97)80154-3

Google Scholar

[37] T.F. Otero, M.T. Cortes, Artificial muscle: movement and position control, Chem. Commun. (2004) 284-285.

Google Scholar

[38] T.F. Otero, J.M. Sansinena, Bilayer dimensions and movement in artificial muscles, Bioelectroch. Bioener. 42 (1997) 117-122.

Google Scholar

[39] T. Otero, M. Cortes, G. Arenas, V, Linear movements from two bending triple-layers, Electrochim. Acta 53 (2007) 1252-1258.

DOI: 10.1016/j.electacta.2007.01.081

Google Scholar

[40] T.F. Otero, M.T. Cortes, A sensing muscle, Sensor Actuat. B-Chem. 96 (2003) 152-156.

Google Scholar

[41] T.F. Otero, E. Angulo, J. Rodriguez, C. Santamaria, Electrochemomechanical Properties from A Bilayer - Polypyrrole Nonconducting and Flexible Material Artificial Muscle, J. Electroanal. Chem. 341 (1992) 369-375.

DOI: 10.1016/0022-0728(92)80495-p

Google Scholar

[42] T.F. Otero, J.G. Martinez, Activation energy for polypyrrole oxidation: film thickness influence, J. Solid State Electr. 15 (2011) 1169-1178.

DOI: 10.1007/s10008-010-1170-1

Google Scholar

[43] I.J. Suarez, T.F. Otero, M. Marquez, Diffusion coefficients in swelling polypyrrole: ESCR and Cottrell models, J. Phys. Chem. B 109 (2005) 1723-1729.

DOI: 10.1021/jp046051q

Google Scholar

[44] Y. Berdichevsky, Y.H. Lo, Polypyrrole nanowire actuators, Adv. Mater. 18 (2006) 122-125.

DOI: 10.1002/adma.200501621

Google Scholar

[45] X. He, C. Li, F. Chen, G. Shi, Polypyrrole microtubule actuators for seizing and transferring microparticles, Adv. Funct. Mater. 17 (2007) 2911-2917.

DOI: 10.1002/adfm.200600869

Google Scholar

[46] G.M. Spinks, L. Liu, G.G. Wallace, D.Z. Zhou, Strain response from polypyrrole actuators under load, Adv. Funct. Mater. 12 (2002) 437-440.

DOI: 10.1002/1616-3028(20020618)12:6/7<437::aid-adfm437>3.0.co;2-i

Google Scholar

[47] G.M. Spinks, G.G. Wallace, L. Liu, D. Zhou, Conducting polymers electromechanical actuators and strain sensors, Macromol. Symp. 192 (2003) 161-169.

DOI: 10.1002/masy.200390025

Google Scholar

[48] G.M. Spinks, T.E. Campbell, G.G. Wallace, Force generation from polypyrrole actuators, Smart Mater. Struct. 14 (2005) 406-412.

DOI: 10.1088/0964-1726/14/2/015

Google Scholar

[49] Q.B. Pei, O. Inganas, Electrochemical Applications of the Bending Beam Method . 1. Mass-Transport and Volume Changes in Polypyrrole During Redox, J. Phys, Chem, 96 (1992) 10507-10514.

DOI: 10.1021/j100204a071

Google Scholar

[50] Q.B. Pei, O. Inganas, Electrochemical Applications of the Bending Beam Method . 2. Electroshrinking and Slow Relaxation in Polypyrrole, J. Phys. Chem. 97 (1993) 6034-6041.

DOI: 10.1021/j100124a041

Google Scholar

[51] Q.B. Pei, O. Inganas, Electrochemical Applications of the Bending Beam Method, A Novel Way to Study Ion-Transport in Electroactive Polymers, Solid State Ionics 60 (1993) 161-166.

DOI: 10.1016/0167-2738(93)90291-a

Google Scholar