Gas Cluster Ion Beam Technology for Nano-Fabrication

Article Preview

Abstract:

A gas cluster is an aggregate of a few to several thousands of gaseous atoms or molecules, and it can be accelerated to a desired energy after ionization. Since the kinetic energy of an atom in a cluster is equal to the total energy divided by the cluster size, a quite-low-energy ion beam can be realized. Although it is difficult to obtain low-energy monomer ion beams due to the space charge effect, equivalently low-energy ion beams can be realized by using cluster ion beams at relatively high acceleration voltages. Not only the low-energy feature but also the dense energy depositions at a local area are important characteristics of the irradiation by gas cluster ions. All of the impinging energy of a gas cluster ion is deposited at the surface region, and this dense energy deposition is the origin of enhanced sputtering yields, crater formation, shockwave generation, and other non-linear effects. GCIBs are being used for industrial applications where a nano-fabrication process is required. Surface smoothing, shallow doping, low-damage etching, trimming, and thin-film formations are promising applications of GCIBs. In this paper, fundamental irradiation effects of GCIB are discussed from the viewpoint of low-energy irradiation, sputtering, and dense energy depositions. Also, various applications of GCIB for nano-fabrications are explained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-8

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Yamada, J. Matsuo, Z. Insepov, D. Takeuchi, M. Akizuki, and N. Toyoda, J. Vac. Sci. Technol. A, 14, 781-785 (1996).

Google Scholar

[2] N. Toyoda, and I. Yamada, IEEE Trans. on Plasma Sci., 36, 1471-1488 (2008).

Google Scholar

[3] J. Matsuo, N. Toyoda, M. Akizuki, and I. Yamada, Nucl. Instr. and Meth. B, 121, 459-463 (1996).

Google Scholar

[4] D. Takeuchi, K. Fukushima, J. Matsuo, I. Yamada, Nucl. Instr. and Meth. B, 121, 493 (1997).

Google Scholar

[5] Z. Insepov, and I. Yamada, Nucl. Instr. and Meth. B, 112, 16 (1996).

Google Scholar

[6] Z. Insepov, and I. Yamada, Nucl. Instr. and Meth. B, 121, 44-48, (1997).

Google Scholar

[7] T. Aoki, J. Matsuo, and G. H. Takaoka, Nucl. Instr. and Meth. B, 202, 278-282 (2003).

Google Scholar

[8] P. Sigmund, Phys. Rev., 184, 383-416 (1969).

Google Scholar

[9] T. Aoki, J. Matsuo, Z. Insepov, and I. Yamada, Nucl. Instr. and Meth. B, 121, 49-52 (1997).

Google Scholar

[10] N. Toyoda, N. Hagiwara, J. Matsuo, and I. Yamada, Nucl. Instr. and Meth. B, 161-163, 980-985 (2000).

Google Scholar

[11] N. Toyoda, S. Matsui, and I. Yamada, Jpn. J. Appl. Phys., 41, 4287-4290 (2002).

Google Scholar

[12] W.K. Chu, Y.P. Li, J.R. Liu, J.Z. Wu, S.C. Tidrow, N. Toyoda, J. Matsuo, and I. Yamada, Appl. Phys. Lett., 72, 246-248(1998).

DOI: 10.1063/1.120699

Google Scholar

[13] A. Yoshida, M. Deguchi, M. Kitabatake, T. Hirao, J. Matsuo, N. Toyoda and I. Yamada, Nucl. Instr. and Meth. B, 112, 248-251 (1996).

Google Scholar

[14] E. A. Dobisz, Z. Z. Bandic, T. W. Wu, and T. Albrecht, Proc. of IEEE, 96, 1836-1846, (2008).

Google Scholar

[15] K. Hattori, K. Ito, Y. Soeno, M. Takai, and M. Matsuzaki, IEEE Trans. Magn., 40, 2510-2515, (2004).

DOI: 10.1109/tmag.2004.832244

Google Scholar

[16] N. Toyoda, K. Nagato, H. Tani, Y. Sakane, M. Nakao, T. Hamaguchi, and I. Yamada, J. Appl. Phys., 105, 07C127-1-3, (2009).

DOI: 10.1063/1.3073665

Google Scholar

[17] N. Toyoda, T. Hirota, I. Yamada, H. Yakushiji, T. Hinoue, T. Ono, H. Matsumoto, IEEE Trans. on Magn., 45, 3503 (2010).

Google Scholar

[18] E. Bourelle, A. Suzuki, A. Sato, T. Seki and J. Matsuo, Nucl. Instr. and Meth. B, 241, 622-625 (2005).

Google Scholar

[19] A. Suzuki, E. Bourelle, A. Sato, T. Seki, and J. Matsuo, Nucl. Instr. and Meth. B, 257, 649-652 (2007).

Google Scholar