Sensor Location Analysis in Nonlinear Acoustics Used for Damage Detection in Composite Chiral Sandwich Panels

Article Preview

Abstract:

This paper demonstrates damage detection in a smart sandwich panel with integrated piezoceramic transducers. The panel is built from a chiral honeycomb and two composite skins. A low-profile, surface-bonded piezoceramic transducer is used for high-frequency ultrasonic excitation. Low-frequency excitation is performed using a piezoceramic stack actuator. Ultrasonic sensing is performed using laser vibrometry. Nonlinear acoustics is applied for damage detection. The study is focused on sensor location analysis with respect to vibro-acoustic wave modulations. The paper demonstrates that when structure is damaged, the high-frequency “weak” ultrasonic wave is modulated by the low-frequency “strong” vibration wave. As a result frequency sidebands can be observed around the main acoustic harmonic in the spectrum of the ultrasonic signal. However, intensity of modulation strongly depends on sensor location.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

223-231

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Prall and R Lakes, Properties of a chiral honeycomb with a Poisson's ratio -1, Int. J. Mech. Sci. 39 (1996) 305-310.

Google Scholar

[2] I. G. Masters and K. E. Evans, Models for the elastic deformations of honeycombs, Composite Structures. 35 (1996) 403-422.

DOI: 10.1016/s0263-8223(96)00054-2

Google Scholar

[3] F. Scarpa, F. C. Smith, G. Burriesci and G. Chambers, Mechanical and electromagnetic behaviour of auxetic honeycomb structures, Aeronautical Journal. 107(1069) (2003) 175-183.

DOI: 10.1017/s0001924000013269

Google Scholar

[4] A. Spadoni, M. Ruzzene and F. Scarpa, Global and local linear buckling behaviour of a chiral cellular structure, Physica Status Soldi B. 242(3) (2005) 695.

DOI: 10.1002/pssb.200460387

Google Scholar

[5] F. Scarpa, S. Blain, T. Lew, D. Perrot, M. Ruzzene and. J. R. Yates, Elastic buckling of hexagonal chiral cell honeycombs, Composites Part A. 38(2) (2007) 280-289.

DOI: 10.1016/j.compositesa.2006.04.007

Google Scholar

[6] P. Lorato, P. Innocenti, F. Scarpa, A. Alderson, K. L. Alderson, K. M. Zied, N. Ravirala, W. Miller, C. W. Smith and K. E. Evans, The transverse elastic properties of chiral honeycombs, Composites Science and Technology. 70(7) (2010) 1057 – 1063.

DOI: 10.1016/j.compscitech.2009.07.008

Google Scholar

[7] W.J. Staszewski, C. Boller and G. R. Tomlinson (Eds.), Health Monitoring of Aerospace Structures, Wiley, Chichester, 2004.

Google Scholar

[8] W.J. Staszewski, S. Mahzan and R. Traynor, Health monitoring of aerospace composite structures - active and passive approach, Composite Science and Technology. 69(11-12) (2009) 1678-1685.

DOI: 10.1016/j.compscitech.2008.09.034

Google Scholar

[9] M. Gherlone, M. Mattone, C. Surace, A. Tassotti and A. Tessler, Novel vibration-based methods for detecting delamination damage in composite plate and shell laminates, Key Engineering Materials. (2005) 289-296.

DOI: 10.4028/www.scientific.net/kem.293-294.289

Google Scholar

[10] F. Just-Agosto, D. Serrano, B. Shafiq and A. Cecchini, Neural network based nondestructive evaluation of sandwich composites, Composites Part B: Engineering. 39(1) (2008) 217-225.

DOI: 10.1016/j.compositesb.2007.02.023

Google Scholar

[11] L.J Pieczonka, W.J. Staszewski, F. Aymerich, T. Uhl and M. Szwedo, Numerical simulations for impact damage detection in composites using vibrothermography, Journal: IOP Conference Series: Materials Science and Engineering. 10(1), (2011) 012062.

DOI: 10.1088/1757-899x/10/1/012062

Google Scholar

[12] E.G. Nesvijski, Some aspects of ultrasonic testing of composites, Composite Structures 48(1-3) (2000) 151-155.

DOI: 10.1016/s0263-8223(99)00088-4

Google Scholar

[13] K. Diamanti, J.M. Hodgkinson and C. Soutis, Detection of low-velocity impact damage in composite plates using Lamb waves, Structural Health Monitoring. 3(1) (2004) 33-41.

DOI: 10.1177/1475921704041869

Google Scholar

[14] M. Meo and M. Zumpano, Nonlinear elastic wave spectroscopy, identification of impact damage on a sandwich plate, Comput. Struct. 71, (2005) 469-474.

DOI: 10.1016/j.compstruct.2005.09.027

Google Scholar

[15] F. Aymerich and W. J. Staszewski, Impact damage detection in composite structures using nonlinear acoustics, Proceedings of the 10th Conference on Deformation and Fracture of Composites (DFC10), Sheffield, UK, 15-17 April 2009.

Google Scholar

[16] N. A. Chrysochoidis, A.K. Barouni and D.S. Saravanos, On the delamination detection in composite beams with active piezoelectrice sensors using non-linear ultrasonics, Proceedings of the SPIE symposium on Smart Structures and Materials: Health Monitoring of Structural and Biological Systems 2009, SPIE Vol. 7295, San Diego, USA, California, 9-12 March 2009.

DOI: 10.1117/12.816915

Google Scholar

[17] F. Aymerich and W.J. Staszewski, Impact damage detection in composite laminates using nonlinear acoustics, Composites Part A. (2009).

DOI: 10.1016/j.compositesa.2009.09.004

Google Scholar

[18] F. Aymerich and W.J. Staszewski

Google Scholar

[19] M. Zumpano and M. Meo, Damage localization using transient non-linear elastic wave spectroscopy on composite structures, Int. J. Nonlinear Mechanics. 43 (2007) 217-230.

DOI: 10.1016/j.ijnonlinmec.2007.12.012

Google Scholar

[20] R.B. Jenal, W.J. Staszewski and F. Scarpa, 2009, Damage Detection in Smart Chiral Sandwich Structures Using Nonlinear Acoustics, Proceedings of the 20th International Conference on Adaptive Structures and Technologies (ICAST), Hong Kong, China, 20-22 October, p.57, 2009.

Google Scholar

[21] A. Klepka, W.J. Staszewski, D. Di Maio, F. Scarpa, K.F. Tee and T. Uhl, Nonlinear wave modulation analysis for damage detection in smart chiral sandwich structures, Proceedings of the 22nd International Conference on Adaptive Structures and Technologies (ICAST), Corfu, Greece, 10-12 October, p.57, 2011.

DOI: 10.4028/www.scientific.net/ast.83.223

Google Scholar

[22] P.P. Delsanto (Ed.), Universality of Nonclassical Nonlinearity, Springer, New York, 2007.

Google Scholar

[23] D.M. Donskoy and A.M. Sutin, Vibro-acoustic modulation nondestructive evaluation technique, J. Intell. Mater. Syst. Struct. 9 (1999) 765-775.

Google Scholar

[24] Z. Parsons and W.J. Staszewski, Nonlinear acoustics with low-profile piezoceramic excitation for crack detection in metallic structures, Smart Materials and Structures. 15 (2006) 1110-1118.

DOI: 10.1088/0964-1726/15/4/025

Google Scholar

[25] P. Duffour, M. Morbidini and P. Cawley, A study of the vibro-acoustic modulation technique for the detection of cracks in metals, J. Acoust. Soc. Am. 119 (2006) 1463-1475.

DOI: 10.1121/1.2161429

Google Scholar

[26] M. Ryles, F. H. Ngau, I. McDonald and W. J. Staszewski, Comparative study of nonlinear acoustic and Lamb wave techniques for fatigue crack detection in metallic structures, Fatigue & Fracture of Engineering Materials & Structures. 31 (2008) 674-683.

DOI: 10.1111/j.1460-2695.2008.01253.x

Google Scholar

[27] A. Klepka, W.J. Staszewski, R.B. Jenal, M. Szwedo, J. Iwaniec and T. Uhl, Nonlinear acoustics for fatigue crack detection – experimental investigations of vibro-acoustic wave modulations, Structural Health Monitoring. 11(2) (2011) 197-211.

DOI: 10.1177/1475921711414236

Google Scholar