[1]
F.J. Himpsel, J.A. Knapp, J.A. VanVechten, D.E. Eastman, Quantum photoyield of diamond (111) - a stable negative-affinity emitter, Phys. Rev. B 20 (1979): 624.
DOI: 10.1103/physrevb.20.624
Google Scholar
[2]
B.B. Pate, The diamond surface: atomic and electronic structure, Surf. Sci. 165 (1986): 83.
Google Scholar
[3]
J. van der Weide, Z. Zhang, P.K. Baumann, M.G. Wensell, J. Bernholc, R.J. Nemanich, Negative-electron-affinity effects on diamond (100) surface, Phys. Rev. B 50 (1994): 5803.
DOI: 10.1103/physrevb.50.5803
Google Scholar
[4]
F.A.M. Koeck, R.J. Nemanich, Low temperature onset for thermionic emitters based on nitrogen incorporated UNCD films, Diam. Relat. Mater. 18 (2009): 232-234.
DOI: 10.1016/j.diamond.2008.11.023
Google Scholar
[5]
F.A.M. Koeck, R.J. Nemanich, A. Lazea, K. Haenen, Thermionic electron emission from low work-function phosphorus doped diamond films, Diam. Relat. Mater. 18 (2009): 789-791.
DOI: 10.1016/j.diamond.2009.01.024
Google Scholar
[6]
K. Uppireddi, T.L. Westover, T.S. Fisher, B.R. Weiner, G. Morell, Thermionic emission energy distribution from nanocrystalline diamond films for direct thermal-electrical energy conversion applications, J. Appl. Phys. 106 (2009): 043716.
DOI: 10.1063/1.3204667
Google Scholar
[7]
M. Kataoka, C. Zhu, F.A.M. Koeck, R.J. Nemanich, Thermionic electron emission from nitrogen-doped homoepitaxial diamond, Diam. Relat. Mater. 19, (2010): 110-113.
DOI: 10.1016/j.diamond.2009.09.002
Google Scholar
[8]
J.D. Rameau, J. Smedley, E.M. Muller, T.E. Kidd, P.D. Johnson, Properties of hydrogen terminated diamond as a photocathode, Phys. Rev. Lett. 106 (2011): 137602.
DOI: 10.1103/physrevlett.106.137602
Google Scholar
[9]
F.A.M. Koeck, R.J. Nemanich, Emission characterization from nitrogen-doped diamond with respect to energy conversion, Diam. Relat. Mater. 15 (2006): 217-220.
DOI: 10.1016/j.diamond.2005.08.045
Google Scholar
[10]
J.W. Schwede, I. Bargatin, D.C. Riley, B.E. Hardin, S.J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R.T. Howe, Z.X. Shen, N.A. Melosh, Photon-enhanced thermionic emission for solar concentrator systems, Nat. Mater. 9 (2010): 762-767.
DOI: 10.1038/nmat2814
Google Scholar
[11]
W. E. Spicer, Photoemissive, photoconductive, and optical absorption studies of alkali-antimony compounds, Phys. Rev. 112 (1958): 114.
DOI: 10.1103/physrev.112.114
Google Scholar
[12]
S. Bhattacharyya, Mechanism of high n-type conduction in nitrogen-doped nanocrystalline diamond, Phys. Rev. B 70 (2004): 125412.
Google Scholar
[13]
F.A. M. Koeck, R.J. Nemanich, Substrate-diamond interface considerations for enhanced thermionic electron emission from nitrogen doped diamond films, J. Appl. Phys. 112 (2012): 113707.
DOI: 10.1063/1.4766442
Google Scholar
[14]
T. Sun, F.A.M. Koeck, C. Zhu, R.J. Nemanich, Combined visible light photo-emission and low temperature thermionic emission from nitrogen doped diamond films, Appl. Phys. Lett. 99 (2011): 202101.
DOI: 10.1063/1.3658638
Google Scholar
[15]
V.G. Tkachenko, A.I. Kondrashev, I.N. Maksimchuk, Advanced metal alloy systems for massive high-current photocathodes, Appl. Phys. B 98 (2010): 839-849.
DOI: 10.1007/s00340-009-3887-z
Google Scholar
[16]
N. Neugebohrn, T. Sun, F.A.M. Koeck, G.G. Hembree, R.J. Nemanich, T. Schmidt, J. Falta, Spatial correlation of photo-induced and thermionic electron emission from low work function diamond films, Diam. Relat. Mater. 40 (2013): 12-16.
DOI: 10.1016/j.diamond.2013.09.009
Google Scholar
[17]
J.B. Cui, J. Ristein, L. Ley, Low-threshold electron emission from diamond, Phys. Rev. B 60, (1999): 16135.
DOI: 10.1103/physrevb.60.16135
Google Scholar
[18]
T. Sun, F.A.M. Koeck, P.B. Stepanov, R.J. Nemanich, Interface and interlayer barriers effects on photo induced electron emission from low work function diamond films, Diam. Relat. Mater. 44 (2014): 123-128.
DOI: 10.1016/j.diamond.2014.02.008
Google Scholar