Numerical Investigation of Flow Dynamics in a Sharp-Crested Weir with Variable Geometry

Article Preview

Abstract:

The diverse flow patterns observed in open channels with weir-type structures are common in natural environments such as rivers. However, the complex flow dynamics in these settings remain only partially understood. To address this research gap, a rectangular sharp-crested weir with variable geometric ratios crest heights (H/P) and widths (H/B) was numerically analyzed using CFD modeling in ANSYS Fluent. The primary objective of this study is to provide detailed numerical insights into flow characteristics over sharp-crested weirs with varying H/P and H/B, where H represents the head over the weir, P the weir height, and B the weir width. Discharge capacity and turbulent intensity profiles and contours were generated and compared across four different cases (Cases A-D). The findings demonstrate that changes in geometric parameters significantly influence flow behavior, particularly by affecting discharge rates and turbulence intensity. These results reveal the presence of complex, wide-ranging flow motions similar to those observed in natural open channels, highlighting the impact of weir geometry on overall flow dynamics.

You might also be interested in these eBooks

Info:

Pages:

191-201

Citation:

Online since:

April 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Gong, J. Deng, W. Wei, Discharge Coefficient of a Round-Crested Weir, Water 11 (2019) 1206.

DOI: 10.3390/w11061206

Google Scholar

[2] M.G. Bos, Discharge Measurement Structures, NASA Sti/recon Technical Report N, National Aeronautics and Space Administration, Washington, DC, USA, 78 (1989) 120-122.

Google Scholar

[3] R. Tim, U. Ramamurthy, M. Rao, Characteristics of Square-Edged and Round-Nosed Broad-Crested Weirs, J. Irrig. Drain. Eng. 114 (1988) 61-73.

DOI: 10.1061/(asce)0733-9437(1988)114:1(61)

Google Scholar

[4] TH.H. Tong, F.R. Lan, Analysis of the Effect of Weir Height on Discharge Capacity of Low Weirs, Yangtze River 11 (2002) 20-21.

Google Scholar

[5] J. Singer, Square-Edged Broad-Crested Weir as a Flow Measurement Device, Water Water Eng. 68 (1964) 229-235.

Google Scholar

[6] W.R. Ackers, A.J.M. Harrison, Weirs and Flumes for Flow Measurement, Wiley, New York, 1978.

Google Scholar

[7] G. Ranga Raju, Flow Through Open Channels, McGraw-Hill, New York, 1981.

Google Scholar

[8] G. Bos, Long Throated Flumes and Broad Crested Weirs, Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht, The Netherlands, 1985.

DOI: 10.1007/978-94-009-6225-5_1

Google Scholar

[9] A. Doeringsfeld, C.L. Barker, Pressure Momentum Theory Applied to the Broad-Crested Weir, Trans. ASCE 106 (1941) 934-969.

DOI: 10.1061/taceat.0005353

Google Scholar

[10] H. Hager, M. Schwalt, Broad-Crested Weir, J. Irrig. Drain. Eng. 120 (1994) 13-26.

DOI: 10.1061/(asce)0733-9437(1994)120:1(13)

Google Scholar

[11] S. Govinda Rao, D. Muralidhar, Discharge Characteristics of Weirs of Finite-Crest Width, La Houille Blanche 49 (1963) 537-545.

DOI: 10.1051/lhb/1963036

Google Scholar

[12] H.M. Aamir, U. Ghani, M. Kaleem Ullah, G.A. Pasha, Experimental Investigation for Discharge Coefficient of an Embankment Weir Using Smooth and Vegetated Embankments, 2nd International Conference on Sustainable Development in Civil Engineering, MUET, Pakistan (2019) 724-728.

Google Scholar

[13] Ali, W.S.J. Uijttewaal, Flow Resistance of Vegetated Weir-Like Obstacles During High Water Stages, J. Hydraul. Eng. 139 (2012) 325-330.

DOI: 10.1061/(asce)hy.1943-7900.0000671

Google Scholar

[14] S. Csiki, B.L. Rhoads, Hydraulic and Geo-Morphological Effects of Run-of-River Dams, Prog. Phys. Geogr. 34 (2010) 755.

Google Scholar

[15] J. Pearson, J. Pizzuto, Bed-Load Transport Over Run-of-River Dams, Geomorphology 248 (2015) 382.

DOI: 10.1016/j.geomorph.2015.07.025

Google Scholar

[16] J. Pearson, J.E. Pizzuto, R. Vargas, Influence of Run-of-River Dams on Floodplain Sediments and Carbon Dynamics, Geoderma 272 (2016) 51.

DOI: 10.1016/j.geoderma.2016.02.029

Google Scholar

[17] J. Sindelar, H. Schobesberger, H. Habersack, Effects of Weir Height and Reservoir Widening on Sediment Continuity at Run-of-River Hydropower Plants in Gravel Bed Rivers, Geomorphology 291 (2017) 106.

DOI: 10.1016/j.geomorph.2016.07.007

Google Scholar

[18] P. Depret, H. Piegay, V. Dugue, L. Vaudor, L.B. Faure, J.L. Coz, B. Camenen, Estimating and Restoring Bed-Load Transport Through a Run-of-River Reservoir, Sci. Total Environ. 654 (2019) 1146.

DOI: 10.1016/j.scitotenv.2018.11.177

Google Scholar

[19] M. Almeida, S.K. Hamilton, E.J. Rosi, J.D. Arantes, N. Barros, G. Boemer, A. Gripp, V.N. Tylli, L. Kaiktsis, B. Ineichen, Sidewall Effects in Flow Over a Backward Facing Step: Experiments and Numerical Simulations, Phys. Fluids 14 (2002) 3835.

DOI: 10.1063/1.1506163

Google Scholar

[20] M. Casserly, J.N. Turner, J.J. O'Sullivan, M. Bruen, C. Bullock, S. Atkinson, E. Kelly-Essel, M.F. Tachie, Upstream Roughness and Reynolds Number Effects on Turbulent Flow Structure Over Forward Facing Step, Int. J. Heat Fluid Flow 66 (2017) 226.

DOI: 10.1016/j.ijheatfluidflow.2015.11.004

Google Scholar

[21] H. Hattori, Y. Nagano, Investigation of Turbulent Boundary Layer Over Forward-Facing Step via Direct Numerical Simulation, Int. J. Heat Fluid Flow 31 (2010) 284.

DOI: 10.1016/j.ijheatfluidflow.2010.02.027

Google Scholar

[22] Fang, M.F. Tachie, On the Unsteady Characteristics of Turbulent Separations Over a Forward–Backward-Facing Step, J. Fluid Mech. 863 (2019) 994.

DOI: 10.1017/jfm.2018.962

Google Scholar

[23] S.V. Mahmoodi-Jezeh, B. Wang, Direct Numerical Simulation of Turbulent Flow Through a Ribbed Square Duct, J. Fluid Mech. 900 (2020) A18.

DOI: 10.1017/jfm.2020.452

Google Scholar

[24] H. Ren, Y. Wu, Turbulent Boundary Layers Over Smooth and Rough Forward-Facing Steps, Phys. Fluids 23 (2011) 045102.

DOI: 10.1063/1.3576911

Google Scholar

[25] Q. Lv, D. Reeve, Numerical Simulation of Overflow at Vertical Weirs Using a Hybrid Level Set/VOF Method, Adv. Water Resour. 34 (2011) 1320.

DOI: 10.1016/j.advwatres.2011.06.009

Google Scholar

[26] J. van der Kindere, B. Ganapathisubramani, Effect of Length of Two-Dimensional Obstacles on Characteristics of Separation and Reattachment, J. Wind Eng. Ind. Aerodyn. 178 (2018) 38.

DOI: 10.1016/j.jweia.2018.04.018

Google Scholar

[27] Yin, M.C. Ong, Numerical Analysis on Flow Around a Wall-Mounted Square Structure Using Dynamic Mode Decomposition, Ocean Eng. 223 (2021) 108647.

DOI: 10.1016/j.oceaneng.2021.108647

Google Scholar

[28] N. Anjum, N. Tanaka, Investigating the Turbulent Flow Behaviour Through Partially Distributed Discontinuous Rigid Vegetation in an Open Channel, River Res. Applic. 36 (2020) 1701–1716.

DOI: 10.1002/rra.3671

Google Scholar

[29] N. Anjum, S. Iqbal, N. Tanaka, Impact of Floating Vegetation Island on Velocity Distribution in Open Channel Flow, Model. Earth Syst. Environ. 10 (2024) 1631–1645.

DOI: 10.1007/s40808-023-01861-9

Google Scholar

[30] J. Ashraf, N. Anjum, M.A. Rahman, U. Ghani, Z. Ahmed, Investigating the Flow Structure Around Floating Vegetation Islands in an Open Channel, Innov. Infrastruct. Solut. 9 (2024) 159.

DOI: 10.1007/s41062-024-01478-6

Google Scholar

[31] H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics, (1995).

Google Scholar

[32] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill Book Company, New York, (1980).

Google Scholar

[33] W. Queen, Morphodynamic Modeling of Flow and Sediment Transport Over Low-Head, Run-of-River Dams, M.S. thesis, Colorado State University, (2018).

Google Scholar

[34] S. Pearson, P.J. Goulart, B. Ganapathisubramani, Turbulent Separation Upstream of a Forward-Facing Step, J. Fluid Mech. 724 (2013) 284.

DOI: 10.1017/jfm.2013.113

Google Scholar

[35] K.K. Gupta, S. Kumar, Flow Over Sharp-Crested Trapezoidal Planform Weirs. In: V. Garg, V. Singh, V. Raj (Eds.), Development of Water Resources in India, Water Science and Technology Library, Vol 75, Springer, Cham, (2017).

DOI: 10.1007/978-3-319-55125-8_31

Google Scholar

[36] S.J. Kline, W.C. Reynolds, F.A. Schraub, P.W. Runstadler, The Structure of Turbulent Boundary Layers, J. Fluid Mech. 30 (1967) 741.

DOI: 10.1017/s0022112067001740

Google Scholar

[37] J. Cantwell, Organized Motion in Turbulent Flow, Annu. Rev. Fluid Mech. 13 (1981) 457.

DOI: 10.1146/annurev.fl.13.010181.002325

Google Scholar

[38] S. Sharma, B.J. McKeon, On Coherent Structure in Wall Turbulence, J. Fluid Mech. 728 (2013) 196.

DOI: 10.1017/jfm.2013.286

Google Scholar

[39] Jimenez, Coherent Structures in Wall-Bounded Turbulence, J. Fluid Mech. 842 (2018) 1.

Google Scholar

[40] J. Adrian, I. Marusic, Coherent Structures in Flow Over Hydraulic Engineering Surfaces, J. Hydraul. Res. 50 (2012) 451.

DOI: 10.1080/00221686.2012.729540

Google Scholar