[1]
J. Gong, J. Deng, W. Wei, Discharge Coefficient of a Round-Crested Weir, Water 11 (2019) 1206.
DOI: 10.3390/w11061206
Google Scholar
[2]
M.G. Bos, Discharge Measurement Structures, NASA Sti/recon Technical Report N, National Aeronautics and Space Administration, Washington, DC, USA, 78 (1989) 120-122.
Google Scholar
[3]
R. Tim, U. Ramamurthy, M. Rao, Characteristics of Square-Edged and Round-Nosed Broad-Crested Weirs, J. Irrig. Drain. Eng. 114 (1988) 61-73.
DOI: 10.1061/(asce)0733-9437(1988)114:1(61)
Google Scholar
[4]
TH.H. Tong, F.R. Lan, Analysis of the Effect of Weir Height on Discharge Capacity of Low Weirs, Yangtze River 11 (2002) 20-21.
Google Scholar
[5]
J. Singer, Square-Edged Broad-Crested Weir as a Flow Measurement Device, Water Water Eng. 68 (1964) 229-235.
Google Scholar
[6]
W.R. Ackers, A.J.M. Harrison, Weirs and Flumes for Flow Measurement, Wiley, New York, 1978.
Google Scholar
[7]
G. Ranga Raju, Flow Through Open Channels, McGraw-Hill, New York, 1981.
Google Scholar
[8]
G. Bos, Long Throated Flumes and Broad Crested Weirs, Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht, The Netherlands, 1985.
DOI: 10.1007/978-94-009-6225-5_1
Google Scholar
[9]
A. Doeringsfeld, C.L. Barker, Pressure Momentum Theory Applied to the Broad-Crested Weir, Trans. ASCE 106 (1941) 934-969.
DOI: 10.1061/taceat.0005353
Google Scholar
[10]
H. Hager, M. Schwalt, Broad-Crested Weir, J. Irrig. Drain. Eng. 120 (1994) 13-26.
DOI: 10.1061/(asce)0733-9437(1994)120:1(13)
Google Scholar
[11]
S. Govinda Rao, D. Muralidhar, Discharge Characteristics of Weirs of Finite-Crest Width, La Houille Blanche 49 (1963) 537-545.
DOI: 10.1051/lhb/1963036
Google Scholar
[12]
H.M. Aamir, U. Ghani, M. Kaleem Ullah, G.A. Pasha, Experimental Investigation for Discharge Coefficient of an Embankment Weir Using Smooth and Vegetated Embankments, 2nd International Conference on Sustainable Development in Civil Engineering, MUET, Pakistan (2019) 724-728.
Google Scholar
[13]
Ali, W.S.J. Uijttewaal, Flow Resistance of Vegetated Weir-Like Obstacles During High Water Stages, J. Hydraul. Eng. 139 (2012) 325-330.
DOI: 10.1061/(asce)hy.1943-7900.0000671
Google Scholar
[14]
S. Csiki, B.L. Rhoads, Hydraulic and Geo-Morphological Effects of Run-of-River Dams, Prog. Phys. Geogr. 34 (2010) 755.
Google Scholar
[15]
J. Pearson, J. Pizzuto, Bed-Load Transport Over Run-of-River Dams, Geomorphology 248 (2015) 382.
DOI: 10.1016/j.geomorph.2015.07.025
Google Scholar
[16]
J. Pearson, J.E. Pizzuto, R. Vargas, Influence of Run-of-River Dams on Floodplain Sediments and Carbon Dynamics, Geoderma 272 (2016) 51.
DOI: 10.1016/j.geoderma.2016.02.029
Google Scholar
[17]
J. Sindelar, H. Schobesberger, H. Habersack, Effects of Weir Height and Reservoir Widening on Sediment Continuity at Run-of-River Hydropower Plants in Gravel Bed Rivers, Geomorphology 291 (2017) 106.
DOI: 10.1016/j.geomorph.2016.07.007
Google Scholar
[18]
P. Depret, H. Piegay, V. Dugue, L. Vaudor, L.B. Faure, J.L. Coz, B. Camenen, Estimating and Restoring Bed-Load Transport Through a Run-of-River Reservoir, Sci. Total Environ. 654 (2019) 1146.
DOI: 10.1016/j.scitotenv.2018.11.177
Google Scholar
[19]
M. Almeida, S.K. Hamilton, E.J. Rosi, J.D. Arantes, N. Barros, G. Boemer, A. Gripp, V.N. Tylli, L. Kaiktsis, B. Ineichen, Sidewall Effects in Flow Over a Backward Facing Step: Experiments and Numerical Simulations, Phys. Fluids 14 (2002) 3835.
DOI: 10.1063/1.1506163
Google Scholar
[20]
M. Casserly, J.N. Turner, J.J. O'Sullivan, M. Bruen, C. Bullock, S. Atkinson, E. Kelly-Essel, M.F. Tachie, Upstream Roughness and Reynolds Number Effects on Turbulent Flow Structure Over Forward Facing Step, Int. J. Heat Fluid Flow 66 (2017) 226.
DOI: 10.1016/j.ijheatfluidflow.2015.11.004
Google Scholar
[21]
H. Hattori, Y. Nagano, Investigation of Turbulent Boundary Layer Over Forward-Facing Step via Direct Numerical Simulation, Int. J. Heat Fluid Flow 31 (2010) 284.
DOI: 10.1016/j.ijheatfluidflow.2010.02.027
Google Scholar
[22]
Fang, M.F. Tachie, On the Unsteady Characteristics of Turbulent Separations Over a Forward–Backward-Facing Step, J. Fluid Mech. 863 (2019) 994.
DOI: 10.1017/jfm.2018.962
Google Scholar
[23]
S.V. Mahmoodi-Jezeh, B. Wang, Direct Numerical Simulation of Turbulent Flow Through a Ribbed Square Duct, J. Fluid Mech. 900 (2020) A18.
DOI: 10.1017/jfm.2020.452
Google Scholar
[24]
H. Ren, Y. Wu, Turbulent Boundary Layers Over Smooth and Rough Forward-Facing Steps, Phys. Fluids 23 (2011) 045102.
DOI: 10.1063/1.3576911
Google Scholar
[25]
Q. Lv, D. Reeve, Numerical Simulation of Overflow at Vertical Weirs Using a Hybrid Level Set/VOF Method, Adv. Water Resour. 34 (2011) 1320.
DOI: 10.1016/j.advwatres.2011.06.009
Google Scholar
[26]
J. van der Kindere, B. Ganapathisubramani, Effect of Length of Two-Dimensional Obstacles on Characteristics of Separation and Reattachment, J. Wind Eng. Ind. Aerodyn. 178 (2018) 38.
DOI: 10.1016/j.jweia.2018.04.018
Google Scholar
[27]
Yin, M.C. Ong, Numerical Analysis on Flow Around a Wall-Mounted Square Structure Using Dynamic Mode Decomposition, Ocean Eng. 223 (2021) 108647.
DOI: 10.1016/j.oceaneng.2021.108647
Google Scholar
[28]
N. Anjum, N. Tanaka, Investigating the Turbulent Flow Behaviour Through Partially Distributed Discontinuous Rigid Vegetation in an Open Channel, River Res. Applic. 36 (2020) 1701–1716.
DOI: 10.1002/rra.3671
Google Scholar
[29]
N. Anjum, S. Iqbal, N. Tanaka, Impact of Floating Vegetation Island on Velocity Distribution in Open Channel Flow, Model. Earth Syst. Environ. 10 (2024) 1631–1645.
DOI: 10.1007/s40808-023-01861-9
Google Scholar
[30]
J. Ashraf, N. Anjum, M.A. Rahman, U. Ghani, Z. Ahmed, Investigating the Flow Structure Around Floating Vegetation Islands in an Open Channel, Innov. Infrastruct. Solut. 9 (2024) 159.
DOI: 10.1007/s41062-024-01478-6
Google Scholar
[31]
H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics, (1995).
Google Scholar
[32]
S.V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill Book Company, New York, (1980).
Google Scholar
[33]
W. Queen, Morphodynamic Modeling of Flow and Sediment Transport Over Low-Head, Run-of-River Dams, M.S. thesis, Colorado State University, (2018).
Google Scholar
[34]
S. Pearson, P.J. Goulart, B. Ganapathisubramani, Turbulent Separation Upstream of a Forward-Facing Step, J. Fluid Mech. 724 (2013) 284.
DOI: 10.1017/jfm.2013.113
Google Scholar
[35]
K.K. Gupta, S. Kumar, Flow Over Sharp-Crested Trapezoidal Planform Weirs. In: V. Garg, V. Singh, V. Raj (Eds.), Development of Water Resources in India, Water Science and Technology Library, Vol 75, Springer, Cham, (2017).
DOI: 10.1007/978-3-319-55125-8_31
Google Scholar
[36]
S.J. Kline, W.C. Reynolds, F.A. Schraub, P.W. Runstadler, The Structure of Turbulent Boundary Layers, J. Fluid Mech. 30 (1967) 741.
DOI: 10.1017/s0022112067001740
Google Scholar
[37]
J. Cantwell, Organized Motion in Turbulent Flow, Annu. Rev. Fluid Mech. 13 (1981) 457.
DOI: 10.1146/annurev.fl.13.010181.002325
Google Scholar
[38]
S. Sharma, B.J. McKeon, On Coherent Structure in Wall Turbulence, J. Fluid Mech. 728 (2013) 196.
DOI: 10.1017/jfm.2013.286
Google Scholar
[39]
Jimenez, Coherent Structures in Wall-Bounded Turbulence, J. Fluid Mech. 842 (2018) 1.
Google Scholar
[40]
J. Adrian, I. Marusic, Coherent Structures in Flow Over Hydraulic Engineering Surfaces, J. Hydraul. Res. 50 (2012) 451.
DOI: 10.1080/00221686.2012.729540
Google Scholar