[1]
Kiflawi, I. and Lang, A. R. , "Linearly polarized luminescence from linear defects in natural and synthetic diamond", Philos. Mag., 30:219, 1974.
DOI: 10.1080/14786439808206549
Google Scholar
[2]
Hanley, P. L. , Kiflawi, I. , and Lang, A. R. , "Topographically identifiable sources of cathodoluminescence in natural diamonds", Phil. Trans. R. Soc. Lond. A, 284:330, 1977.
DOI: 10.1098/rsta.1977.0012
Google Scholar
[3]
Sumida, N. and Lang, A. R. , "Cathodoluminescence evidence of dislocation interactions in diamond", Philos. Mag. A, 43:1277, 1981.19
Google Scholar
[4]
Lang, A. R. , "Internal structure", In Field, J. E. , editor, The properties of diamond, page 425. Academic Press, London, New York, San Francisco, 1982.
Google Scholar
[5]
Graebner, J. E. , Reiss, M. E. , Seibles, L. , Hartnett, T. M. , Miller, R. P. , and Robinson, C. J. , "Phonon scattering in chemical-vapor-deposited diamond", Phys. Rev. B, 50:3702, 1994.
DOI: 10.1103/physrevb.50.3702
Google Scholar
[6]
Steeds, J. W. , Mora, A. E. , Butler, J. E. , and Bussmann, K. M. , "Transmission electron microscopy investigation of boron-doped polycrystalline chemically vapour-deposited diamond", Philos. Mag. A, 82:1741, 2002.
DOI: 10.1080/01418610208235687
Google Scholar
[7]
Humble, P. and Hannink, R. H. J. , "Plastic-deformation of diamond at room-temperature", Nature, Lond., 273:37, 1978.
DOI: 10.1038/273037a0
Google Scholar
[8]
Sumida, N. and Lang, A. R. , "Cathodoluminescence and TEM studies of dislocation-rich natural diamonds", In Cullis, A. G. and Joy, D. C. , editors, Microscopy of semiconducting materials 1981, number 60 in conference series, page 319, Institute of Physics, Bristol, London, 1981.
Google Scholar
[9]
Hirth, J. P. and Lothe, J. , Theory of Dislocations, Wiley, New York, 2nd edition, 1982.
Google Scholar
[10]
Pirouz, P. , Cockayne, D. J. H. , Sumida, N. , Hirsch, Sir Peter , and Lang, A. R. , "Dissociation of dislocations in diamond", Proc. R. Soc. Lond. A, 386:241, 1983.
Google Scholar
[11]
Nandedkar, A. S. and Narayan, J. , "Atomic structure of dislocations in silicon, germanium and diamond", Philos. Mag. A, 61:873, 1990.
DOI: 10.1080/01418619008234948
Google Scholar
[12]
Sitch, P. K. , Jones, R. , ¨Oberg, S. , and Heggie, M. I. , "An ab initio study of the 90 degree partial dislocation core in diamond", Journal de Physique III, 7:1381, 1997.
DOI: 10.1051/jp3:1997193
Google Scholar
[13]
Nunes, R. W. , Bennetto, J. , and Vanderbilt, D. , "Core reconstruction of the 90� partial dislocation in nonpolar semiconductors", Phys. Rev. B, 58:12563, 1998.
DOI: 10.1103/physrevb.58.12563
Google Scholar
[14]
Blase, X. , Lin, K. , Canning, A. , Louie, S. G. , and Chrzan, D. C. , "Structure and energy of the 90� partial dislocation in diamond: A combined ab initio and elasticity theory analysis", Phys. Rev. Lett., 84:5780, 2000.
DOI: 10.1103/physrevlett.84.5780
Google Scholar
[15]
Blumenau, A. T. , Heggie, M. I. , Fall, C. J. , Jones, R. , and Frauenheim, T. , "Dislocations in diamond: Core structures and energies", Phys. Rev. B, 65:205205, 2002.
DOI: 10.1103/physrevb.65.205205
Google Scholar
[16]
Fall, C. J. , Blumenau, A. T. , Jones, R. , Briddon, P. R. , Frauenheim, T. , Guti´errez-Sosa, A. , Bangert, U. , Mora, A. E. , Steeds, J. W. , and Butler, J. E. , "Dislocations in diamond: Electron energyloss spectroscopy", Phys. Rev. B, 65:205206, 2002.
DOI: 10.1103/physrevb.65.205206
Google Scholar
[17]
Blumenau, A. T. , Jones, R. , Frauenheim, T. , Willems, B. , Lebedev, O. I. , Van Tendeloo, G. , Fisher, D. , and Martineau, P. M. , "Dislocations in diamond: Dissociation into partials and their glide motion", Phys. Rev. B, 68:014115, 2003.
DOI: 10.1103/physrevb.68.014115
Google Scholar
[18]
Musgrave, M. J. P. and Pople, J. A. , "A general valence force field for diamond", Proc. R. Soc. Lond. A, 268:474, 1962.
Google Scholar
[19]
Keating, P. N. , "Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure", Phys. Rev., 145:637, 1966.
DOI: 10.1103/physrev.145.637
Google Scholar
[20]
Stillinger, F. H. and Weber, T. A. , "Computer simulation of local order in condensed phases of silicon", Phys. Rev. B, 31:5262, 1985.
DOI: 10.1103/physrevb.31.5262
Google Scholar
[21]
Tersoff, J. , "New empirical model for the structural properties of silicon", Phys. Rev. Lett., 56:632, 1986.20
DOI: 10.1103/physrevlett.56.632
Google Scholar
[22]
Hohenberg, P. and Kohn, W. , "Inhomogeneous electron gas", Phys. Rev., 136:B864, 1964.
DOI: 10.1103/physrev.136.b864
Google Scholar
[23]
Kohn, W. and Sham, L. J. , "Self-consistent equations including exchange and correlation effects", Phys. Rev., 140:A1133, 1965.
DOI: 10.1103/physrev.140.a1133
Google Scholar
[24]
Lieb, E. H. , "Density functionals for Coulomb systems", International Journal of Quantum Chemistry, 24:243, 1983.
Google Scholar
[25]
Seifert, G. , Eschrig, H. , and Bieger, W. , "Eine approximative Variante des LCAO-X� Verfahrens", Z. Phys. Chem., 267(3):529-539, 1986.
Google Scholar
[26]
Porezag, D. , Frauenheim, T. , K¨ohler, T. , Seifert, G. , and Kaschner, R. , "Construction of tight-bindinglike potentials on the basis of density-functional theory: Application to carbon", Phys. Rev. B, 51:12947, 1995.
DOI: 10.1103/physrevb.51.12947
Google Scholar
[27]
Porezag, D. , Development of Ab-Initio and Approximate Density Functional Methods and their Application to Complex Fullerene Systems, Dissertation (PhD thesis), Fakult¨at f¨ur Naturwissenschaften, Technische Universit¨at Chemnitz-Zwickau, 1997.
Google Scholar
[28]
Frauenheim, T. , Seifert, G. , Elstner, M. , Hajnal, Z. , Jungnickel, G. , Porezag, D. , Suhai, S. , and Scholz, R. , "A self-consistent charge density-functional based tight-binding method for predictive materials simulations in physics, chemistry and biology", phys. stat. sol. (b), 217:41, 2000.
DOI: 10.1002/(sici)1521-3951(200001)217:1<41::aid-pssb41>3.0.co;2-v
Google Scholar
[29]
Sternberg, M. , The Atomic Structure of Diamond Surfaces and Interfaces, Dissertation (PhD thesis), Fachbereich Physik, Universit¨at Paderborn, 2001.
Google Scholar
[30]
Janak, J. F. , "Proof that ��������� � ��=� in density-functional theory", Phys. Rev. B, 18(12):7165-7168, 1978.
Google Scholar
[31]
Foulkes, W. M. C. and Haydock, R. , "Tight-binding models and density-functional theory", Phys. Rev. B, 39(17):12520-12536, 1989.
DOI: 10.1103/physrevb.39.12520
Google Scholar
[32]
Hellmann, H. , "Einf¨uhrung in die Quantenchemie", Franz Deutike, Leipzig, 1937.
Google Scholar
[33]
Feynman, R. P. , "Forces in molecules", Phys. Rev., 56:340, 1939.
Google Scholar
[34]
Pulay, P. , "Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules. I. theory", Mol. Phys., 17:197, 1969.
DOI: 10.1080/00268976900100941
Google Scholar
[35]
Nabarro, F. R. N. , "The mathematical theory of stationary dislocations", Adv. Phys., 1:269, 1952.
Google Scholar
[36]
Blumenau, A. T. , Elsner, J. , Jones, R. , Heggie, M. I. , ¨Oberg, S. , Frauenheim, T. , and Briddon, P. R. , "Dislocations in hexagonal and cubic GaN", J. Phys.: Condens. Matter, 12:10223, 2000.
DOI: 10.1088/0953-8984/12/49/322
Google Scholar
[37]
Northrup, J. E. , "Screw dislocations in GaN: The Ga-filled core model", Appl. Phys. Lett., 78:2288, 2001.
DOI: 10.1063/1.1361274
Google Scholar
[38]
Bennetto, J. , Nunes, R. W. , and Vanderbilt, D. , "Period-doubled structure for the 90� partial dislocation in silicon", Phys. Rev. Lett., 79:245, 1997.
DOI: 10.1103/physrevlett.79.245
Google Scholar
[39]
Luyten, W. , TendelooVan , G. , and Amelinckx, S. , "Electron-microscopy study of defects in synthetic diamond layers", Philos. Mag. A, 66:899, 1992.
DOI: 10.1080/01418619208247998
Google Scholar
[40]
Moodie, A. F. , "Reciprocity and shape functions in multiple-scattering diagrams", Z. Naturforsch., 27:437, 1972.
Google Scholar
[41]
Ishizuka, K. and Uyeda, N. , "A new theoretical and practical approach to the multislice method", Acta Cryst., A33:740, 1977. This article was processed using the LATEX macro package with TTP style
Google Scholar