Annealing of Fe-15at.%Cr Alloy in N2-H2 Gas Mixtures: Effect of Hydrogen

Article Preview

Abstract:

The effect of hydrogen during annealing of Fe-15.at%Cr alloy on the diffusion profile was investigated concerning the enrichment of chromium and the selective oxidation. Samples were exposed to an annealing gas mixture with different hydrogen contents in an infrared heating furnace and heated to 800oC, kept for 60 seconds and then cooled down to room temperature. After the experiments, field emission scanning electron microscopy (FE-SEM) equipped with electron back-scattering diffraction (EBSD) and x-ray photoelectron spectroscopy (XPS) were employed to characterize the morphology, elemental depth profiles and the chemical states of the elements. The annealing increased the Cr content at the surface in all atmospheres. The increase of hydrogen content in the atmosphere further increased the Cr to Fe ratio in near-surface, and the thickness of the layer affected by the heat treatment. The selective oxidation of chromium occurred as internal Cr2O3 formation, as a function of the Cr content, rather than the oxygen partial pressure. Hydrogen facilitated the diffusion of chromium probably by cleaning of fast diffusion paths.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 237-240)

Pages:

928-933

Citation:

Online since:

April 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Kofstad: High Temperature Corrosion (Elsevier, NY 1988).

Google Scholar

[2] B. Chattopadhyay and G.C. Wood: Oxid. Met. Vol. 2 (1970), p.373.

Google Scholar

[3] H.J. Mathieu and D. Landolt: Corr. Sci. Vol. 26 (1986), p.547.

Google Scholar

[4] C. -O.A. Olsson and D. Landolt: Electrochemica Acta Vol. 48 (2003), p.1093.

Google Scholar

[5] E. McCafferty: Corr. Sci. Vol. 42 (2000), p. (1993).

Google Scholar

[6] E. Park, B. Hüning and M. Spiegel: EUROCORR 2004, Nice, France (2004).

Google Scholar

[7] C. Ostwald and H.J. Grabke: Corr. Sci. Vol. 46 (2004), p.1113.

Google Scholar

[8] T. Kang, K. Ihm, C. Hwang, C. Jeon, K. Kim, J. Kim, M. Lee, H. Shin, B. Kim, S. Chung and C. Park: Appl. Surf. Sci. Vol. 212-213 (2003), p.630.

Google Scholar

[9] F.F. Abraham and C.R. Brundle: J. Vac. Sci. Technol. Vol. 18 (1981), p.506.

Google Scholar

[10] C. Leygraf, G. Hultquist and S. Ekelund: Surf. Sci. Vol. 46 (1974), p.157.

Google Scholar

[11] H.J. Grabke, R. Dennert and B. Wagemann: Oxid. Met. Vol. 47 (1997), p.495.

Google Scholar

[12] E. Clauberg, C. Uebing and H.J. Grabke: Surf. Sci. Vol. 433-435 (1999), p.617.

Google Scholar

[13] H.J. Grabke, V. Leroy and H. Viefhaus: ISIJ Int. Vol. 35 (1995), p.95.

Google Scholar

[14] H.J. Grabke, W. Paulitschke, G. Tauber and H. Viefhaus: Surf. Sci. Vol. 63 (1977), p.377.

Google Scholar

[15] S. Suzuki, T. Nakazawa and Y. Waseda: ISIJ Int. Vol. 36 (1996), p.1273.

Google Scholar

[16] E.T. Turkdogan: Physical Chemistry of High Temperature Technology (Academic Press, NY 1980).

Google Scholar

[17] J.H. Swisher and E.T. Turkdogan: TMS AIME. Vol. 239 (1967), p.426.

Google Scholar

[18] L. Bogdandy and H.J. Engell: The Reduction of Iron Ores (Verlag Stahleisen m. b.H. Düsseldorf 1970).

Google Scholar

[19] A.W. Bowen and G.M. Leak: Metall. Trans. Vol. 1 (1970), p.2767.

Google Scholar

[20] R.T.P. Whipple: Philos. Mag. Vol. 45 (1954), p.1225.

Google Scholar

[21] Th. Heumann: Diffusion in Metallen (Springer, Berlin 1992).

Google Scholar

[22] P. Shewmon: Diffusion in Solids, 2nd ed. (TMS, Warrendale, PA 1989).

Google Scholar