Prediction of the Depletion Zone due to Selective Oxidation of P91 Steel

Article Preview

Abstract:

Experimental measurements do not allow for a unique determination of the concentration profiles, e.g., in case of multi-layer systems. The measured concentration of the elements at the alloy/scale interface is an average concentration in an alloy and in a scale near the spot of the beam [1]. The knowledge of the concentration of the elements at the boundary is necessary for the understanding corrosion of alloys. This essential obstacle of experimental techniques can be overcome by computer modelling. Namely, by combining the different methods (non-unique measurement with unique modelling). The Danielewski-Holly model of interdiffusion has a unique solution. This model enables to predict the evolution of component distributions in the reacting alloy. The model is valid for time dependent boundary conditions and consequently can be used for modelling the more complex reactions, eg., the formation of complex oxides. To avoid the nonphysical values of fluxes in reacting alloy the kinetic constraint on all fluxes was introduced, i.e., the flux limitation method. The results of the selective oxidation of the P91 steel (0,1 wt.% C, 8,6 wt.% Cr, 0,25 wt.% Ni) are presented. Calculated concentration profiles are compared with the experimental data. We show the evolution of chromium distribution in oxidizing steel up to 3 000 hours. The computations demonstrate that chromium depletion is the key factor determining the scale composition.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 237-240)

Pages:

965-970

Citation:

Online since:

April 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.P. Vossen, P. Gawenda, K. Rahts, M. Röhring, M. Schorr, M. Schütze: Materials at High Temperatures Vol. 14 (1997), p.387.

Google Scholar

[2] R.B. Scarlingr: Advances in Turbine Materials, Design and Manufacturing, Proc. of Intern. Charles Parson Turbine Conf. 4-6 November 1997, Civic Centre, Newcastle, UK, p.242.

Google Scholar

[3] R.W. Swindeman, M.L. Santella, P.J. Maziasz, B.W. Roberts, K. Coleman: Intern.J. of Pressure Vessels and Piping 81 (2004), p.507.

DOI: 10.1016/j.ijpvp.2003.12.009

Google Scholar

[4] S.R. Pilai, P. Sankar, H.S. Khatak: High Temperature Materials and Processes Vol. 23 (2004), p.195.

Google Scholar

[5] V. Sklenička, K. Kuchařová, M. Svoboda, L. Kloc, L. Buršik, A. Kroupa: Materials Characterization Vol. 51 (2003), p.35.

Google Scholar

[6] H. Nickiel , P.J. Ennis, W.J. Quadakkers: Mineral Processing and Extractive Matallurgy Review Vol. 22 (2001), p.181.

Google Scholar

[7] C. Ostwald, H.J. Grabke: Corrosion Science Vol. 46 (2004), p.1113.

Google Scholar

[8] B. Gleeson: High-Temperature Corrosion of Metallic Alloys and Coatings, Chapter in: Corrosion and Environmental Degradation of Materials, M. Schütze (Ed. ), Wiley-VCH, (2000), p.173.

Google Scholar

[9] C. Wagner: J. Electroche. Soc. Vol. 99 No. 10 (1952) p.369.

Google Scholar

[10] P. Kofstad: High Temperature Corrosion, Elsevier Applied Science, New York (1988).

Google Scholar

[11] S. Henry, A. Galerie, L. Antoni: Materials Science Forum Vol. 369-372 (2001), p.353.

Google Scholar

[12] M. Schütze, D. Renusch, M. Schorr: Oxidation of Metals Vol. 53 (2000), p.193.

Google Scholar

[13] T. Ishitsuka: Oxidation of Metals Vol. 61 (2004), p.125.

Google Scholar

[14] Zs. Tökei, H. Viefhaus, K. Hennesen, H.J. Grabke: Solid State Phenomena Vol. 72 (2000), p.3.

Google Scholar

[15] C. Piehl, Zs Tökei, H.J. Grabke: Defect and Diffusion Forum Vols. 194-199 (2001), p.1689.

Google Scholar

[16] L.S. Darken: Trans. AIME Vol. 174 (1948), p.184.

Google Scholar

[17] K. Holly and M. Danielewski: Phys. Rev. B Vol. 50 (1994), p.13336.

Google Scholar

[18] M. Danielewski, R. Filipek, K. Holly and B. Bożek: phys. stat. sol. (a) Vol. 145 (1994), p.339.

DOI: 10.1002/pssa.2211450214

Google Scholar

[19] R. Filipek: Modelling of Interdiffusion and Reactions at the Boundary; Initial-value Problem of Interdiffusion in the Open Systems, Defect and Diffusion Forum, in press.

DOI: 10.4028/www.scientific.net/ddf.237-240.250

Google Scholar

[20] M. Danielewski and M. Wakihara: Kinetic Constraints in Diffusion, Defect and Diffusion Forum, in press.

DOI: 10.4028/www.scientific.net/ddf.237-240.151

Google Scholar

[21] R. Filipek, M. Danielewski and R. Bachorczyk, Interdiffusion Studies in Co-Fe-Ni Alloys, Defect and Diffusion Forum, in press.

DOI: 10.4028/www.scientific.net/ddf.237-240.408

Google Scholar

[22] A. Milewska: Reactive Diffusion and Determination of Diffusion Coefficients in SinglePhase Multi-Component Alloys, PhD thesis, AGH University of Science and Technology, Krakow (2001).

Google Scholar