Diffusion of Boron in Silicon and Silicon-Germanium in the Presence of Carbon

Article Preview

Abstract:

Boron diffusion in Si and strained SiGe with and without C was studied. Using gassource molecular beam epitaxy (MBE), B containing epitaxial layers of: (i) Si, (ii) Si containing 0.1% C, (iii) SiGe with 11% Ge and (iv) SiGe with 11% Ge and with a 0.1% C, were grown on substrates. These samples were then rapid thermal annealed (RTA) at 940, 1000 and 1050°C in an O2 ambient. Self-interstitial-, vacancy- and non-injection conditions were achieved by annealing bare, Si3N4- and Si3N4+SiO2-coated surfaces, respectively. Concentration profiles of B, Ge and C were obtained using Secondary-Ion Mass Spectrometry (SIMS). Diffusion coefficients of B in each type of matrix were extracted by computer simulation. We find that B diffusivity is reduced by both Ge and C. The suppression due to C is much larger. In all materials, a substantial enhancement of B diffusion was observed due to self-interstitial injection compared to non-injection conditions. These results indicate that B diffusion in all four types of layers is mediated primarily by interstitialcy type defects.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 237-240)

Pages:

998-1003

Citation:

Online since:

April 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Peter Ashburn, Mater. Sci. Semi. Process., 4, 521, (2001).

Google Scholar

[2] D. J. Meyer, D. A. Webb, M. G. Ward, J. D. Sellar, P. Y. Zeng and, J. Robinson, Mater. Sci. Semi. Process., 4, 529, (2001).

Google Scholar

[3] P. M. Fahey, P. B. Griffin and, J. D. Plummer, Rev. Mod. Phys., 61(2), 289, (1989).

Google Scholar

[4] A. F. W. Willoughby in Silicon Materials Science and Technology, edited by H. R. Huff and H. Tsuya and U. Gösele, (Proc. Electrochem. Soc., 98-1, 1998) 871.

Google Scholar

[5] S. Nishikawa, A. Tanaka, and T. Yamaji, Appl. Phys. Lett., 60, 2270 (1992).

Google Scholar

[6] P. A. Stolk, D. J. Eaglesham, H. J. Gossmann, and J. M. Poate, Appl. Phys. Lett., 66(11), 1370, (1995).

DOI: 10.1063/1.113204

Google Scholar

[7] H. Rücker, B. Heinemann, W. Röpke, R. Kurps, D. Krüger, G. Lippert and, H. J. Osten, Appl. Phys. Lett., 73(12), 1682 (1998).

DOI: 10.1063/1.122244

Google Scholar

[8] R. Scholz, U. Gösele, J. -Y. Huh and, T. Y. Tan, Appl. Phys. Lett., 72(2), 200, (1998).

Google Scholar

[9] H. J. Osten, D. Knoll and, H. Rücker, Mater. Sci. Eng., B87, 262 (2001).

Google Scholar

[10] K. Rajendran and W. Schoenmaker, J. Appl. Phys., 89(2), 980, (2001).

Google Scholar

[11] N. R. Zangenberg, J. Fage-Pedersen, J. Lundsgaard Hansen and A. Nylandsted Larsen, J. Appl. Phys., 94(6), 3883, (2003).

Google Scholar

[12] H. Rücker and, B. Heinemann, Solid State Electron., 44, 783, (2000).

Google Scholar

[13] S. M. Hu, Appl. Phys. Lett., 43(5), 449, (1983).

Google Scholar

[14] Y. Zaitsu, T. Shimizu, J. Takeuchi, S. Matsumoto, M. Yoshida, T. Abe and, E. Arai, J. Electrochem. Soc., 145(1), 258, (1998).

Google Scholar

[15] K. Osada, Y. Zaitsu, S. Matsumoto, M. Yoshida, E. Arai and, T. Abe, J. Electrochem. Soc., 142(1), 202, (1995).

Google Scholar

[16] S. T. Ahn, H. W. Kennel and J. D. Plummer and W. A. Tiller, J. Appl. Phys., 64(10), 4914, (1988).

Google Scholar

[17] J. M. Bonar, A. F. W. Willoughby, A. H. Dan, B. M. McGregor, W. Lerch, D. Loeffelmacher, G. A. Cooke and, M. G. Dowsett, J. Mater. Sci.: Materials in Electronics, 12(4-6), 219, (2001).

DOI: 10.1023/a:1011299017835

Google Scholar

[18] Athena User's Manual, 2D Process Simulation Software, SILVACO International, 4701 Patrick Henry Drive, Bldg. 1, Santa Clara, CA 95054, USA, (2000).

Google Scholar

[19] R. B. Fair, in Impurity Doping Processes in Silicon, edited by F. F. Y. Wang, (North Holand, Amsterdam, The Netherlands, 1981), p.315.

Google Scholar