Dynamic Embrittlement - Diffusion-Induced Intergranular Cracking

Article Preview

Abstract:

The present paper is about dynamic embrittlement as a generic damage mechanism. It involves grain-boundary diffusion of an embrittling species at elevated temperatures under the influence of mechanical stress. The embrittling species, either coming from the material itself or from the environment, reduces the grain-boundary cohesion and, hence, causes time-dependent intergranular fracture. Evidence of the technical significance of dynamic embrittlement is given by two examples, stress-relief cracking in steels and hold-time cracking during low-cycle-fatigue loading of nickel-base superalloys. There is an obvious relationship between the grain-boundary structure and the local susceptibility to dynamic embrittlement. This was proven by mechanical experiments on bicrystals and grain-boundary-engineering-type-processed specimens.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 258-260)

Pages:

192-198

Citation:

Online since:

October 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Hull and D. E. Rimmer: Phil. Mag. Vol. 4 (1959) p.673.

Google Scholar

[2] Y. Xu and J.L. Bassani: Mater. Sci. Engng. Vol. A260 (1999) p.48.

Google Scholar

[3] J. A. Pfaendtner and C. J. McMahon, Jr.: Acta Mater. Vol. 49 (2001) p.3369.

Google Scholar

[4] D. Bika, J. A. Pfaendtner, M. Menyhard, and C. J. McMahon, Jr.: Acta Metall. et Mater. Vol. 43 (1995) p. (1909).

Google Scholar

[5] E. V. Barrera, M. Menyhard, D. Bika, B. Rothman, and C. J. McMahon, Jr.: Scripta Metall. Vol. 27 (1992) p.205.

Google Scholar

[6] U. Krupp: Int. Mater. Rev., Vol. 50 (2005) p.83.

Google Scholar

[7] W.M. Kane, U. Krupp, T. Jacobs, and C.J. McMahon Jr.: Mater. Sci. Engng. Vol. 402 (2005) p.42.

Google Scholar

[8] U. Krupp, Ph. E. -G. Wagenhuber, W. M. Kane, and C.J. McMahon Jr.: Mater. Sci. Techn. Vol. 21 (2005) p.1247.

Google Scholar

[9] U. Krupp, C.J. McMahon Jr.: J. Alloys Comp. Vol. 378 (2004) p.79.

Google Scholar

[10] C.F. Miller, G.W. Simmons and R.P. Wei: Scripta Mater. Vol. 44 (2001) p.2405.

Google Scholar

[11] R. Molins, G. Hochstetter, J.C. Chassaigne, and E. Andrieu: Acta Mater. Vol. 45 (1997) p.663.

Google Scholar

[12] Y. Mishin and C. Herzig: Mater Sci. Engng. A, Vol. 260 (1999) p.55.

Google Scholar

[13] U. Krupp: Fatigue Crack Propagation in Metals and Alloys (Wiley VCH 2006, in press).

Google Scholar

[14] U. Krupp, W. M. Kane, X-Y Liu, O. Dueber, C. Laird, and C. J. McMahon, Jr.: Mater Sci. Engng. A, Vol. 349 (2003) p.213.

Google Scholar

[15] R. C. Muthiah, J. A. Pfaendtner, S. Ishikawa, and C. J. McMahon, Jr.: Acta Mater. Vol. 47 (1999) p.2797.

Google Scholar