Evolution of Interdiffused Gaussian-Shape Nanolayer in Au-Si(111) System at Ambient Condition

Article Preview

Abstract:

Evolution of interdiffused Gaussian-shape nanolayer of Au-Si, formed due to diffusion of Au into Si(111) substrate at ambient conditions, depends strongly on the Si surface pretreatment/passivation conditions. Negligible diffusion in the Au-OSi(111) sample, confirms the strong barrier action of the oxide-layer against diffusion, while large diffusion in the Au-HSi(111) sample compared to that in the Au-BrSi(111) sample suggests that the H-passivated Si(111) surface is more stable. This nature of the Au-Si(111) system is qualitatively similar to that of the Au-Si(001) system but it differs quantitatively. The size, electronegativity and bond-energy of the passivating elements and the number of dangling bonds on the Si surface influence the instability of the Si surface. This instability, parameterized by growth-time of oxide layer alone, can be utilized to tune the amount of diffusion into the sub-surface Si region. The distribution of growth-time and fractional passivated area, which are related to the improper Si surface passivation, are against such control and needs perfection.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

1133-1139

Citation:

Online since:

April 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Cros, P. Muret: Mater. Sci. Rep. Vol. 8 (1992), p.271.

Google Scholar

[2] C.B. Collins, R.O. Carlson, C.J. Gallagher: Phys. Rev. Vol. 105 (1957), p.1168.

Google Scholar

[3] L.A. Baker, A.R. Laracuente and L. J. Whitman: Phys. Rev. B Vol. 71 (2005), p.153302.

Google Scholar

[4] J.K. Bal and S. Hazra: Phys. Rev. B Vol. 75 (2007), p.205411.

Google Scholar

[5] G.W. Trucks, K. Raghavachari, G.S. Higashi and Y.J. Chabal: Phys. Rev. Lett. Vol. 65 (1990), p.504.

Google Scholar

[6] J.K. Bal and S. Hazra: Phys. Rev. B Vol. 79 (2009), p.155411.

Google Scholar

[7] K. Sekar, P.V. Satyam, G. Kuri, D.P. Mahapatra and B.N. Dev: Nucl. Instrum. Meth. B Vol. 71 (1992), p.308.

Google Scholar

[8] C.H. Lee, Z.D. Lin, N.G. Shang, L.S. Liao et al.: Phys. Rev. B Vol. 62 (2000), p.17134.

Google Scholar

[9] J.F. Chang, T.F. Young, Y.L. Yang, H.Y. Ueng, T.C. Chang: Mater. Chem. Phys. Vol. 83 (2004), p.199.

Google Scholar

[10] J.K. Bal and S. Hazra: Phys. Rev. B Vol. 79 (2009), p.155405.

Google Scholar

[11] L.G. Parratt: Phys. Rev. Vol. 95 (1954), p.359.

Google Scholar

[12] A. Fick: Phil. Mag. Vol. 10 (1855), p.30.

Google Scholar

[13] R. Kohlrausch: Pogg. Ann. Phys. Vol. 12 (1847), p.393.

Google Scholar

[14] G. Williams and D. C. Watts: Trans. Faraday Soc. Vol. 66 (1970), p.80.

Google Scholar

[15] J.K. Basu, S. Hazra and M.K. Sanyal: Phys. Rev. Lett. Vol. 82 (1999), p.4675.

Google Scholar

[16] S.K. Sinha, E. B. Sirota, S. Garoff and H. B. Stanley: Phys. Rev. B Vol. 38 (1988), p.2297.

Google Scholar

[17] A. -L. Barabási and H.E. Stanley: in Fractal Concepts in Surface Growth; University Press: Cambridge, (1995).

Google Scholar

[18] A. Korkin, J.C. Greer, G. Bersuker, V.V. Karasiev and R.J. Bartlett: Phys. Rev. B Vol. 73 (2006), p.165312.

Google Scholar

[19] Periodic Table of Elements; http: /www. dayah. com/periodic.

Google Scholar

[20] Wired Chemist; http: /www. wiredchemist. com.

Google Scholar

[21] H. Aizawa, S. Tsuneyuki and T. Ogitsu: Surf. Sci. Vol. 438 (1999), p.18.

Google Scholar