Electrochemical Mass Transfer Measurements of CO2 in MDEA Solutions

Article Preview

Abstract:

The mass transfer coefficients at different axial positions in a bubble column have been measured using a conductivity method. Measurements of CO2 absorption in methyldiethanolamine solutions were carried out in a prismatic column 0.06 m side and 1.03 m height. Five electrode pairs were placed at various axial positions in the column. Measurements were conducted at different gas flow rates and amine concentration. It was found that the local mass transfer varied in the axial direction. An experimental model was developed to obtain the absorption rate values using the electrochemical method data. The model agrees quite well with the experimental obtained data.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 312-315)

Pages:

87-92

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J-J. Ko and M-H. Li: Chemical Engineering Science Vol. 55 (2000), p.4139.

Google Scholar

[2] C-H. Liao and M-H. Li: Chem. Eng. Sci. Vol. 57 (2002), p.4569.

Google Scholar

[3] Y. Shi and Z. Zhong: Chem. Eng. Comm. Vol. 192 (2005), p.1180.

Google Scholar

[4] H. Chaumat, A.M. Billet-Duquenne, F. Augier, C. Mathieu and H. Delmas: Chem. Eng. Sci. Vol. 60 (2005), p.5930.

Google Scholar

[5] E.S. Gaddis: Chem. Eng. Process. Vol. 38 (1999), p.503.

Google Scholar

[6] A. Kundu, E. Dumont, A.M. Duquenne and H. Delmas: Can. J. Chem. Eng. Vol. 81 (2003), p.640.

Google Scholar

[7] P. Painmanakul, K. Loubière, G. Hèrbrard, M. Mietton-Peuchot and M. Roustan: Chem. Eng. Sci. Vol. 60 (2005), p.6480.

DOI: 10.1016/j.ces.2005.04.053

Google Scholar

[8] C.O. Vandu and R. Krishna: Chem. Eng. Process. Vol. 43 (2004), p.987.

Google Scholar

[9] C.O. Vandu, K. Koop and R. Krishna: Chem. Eng. Sci. Vol. 59 (2004), p.5417.

Google Scholar

[10] G. Vázquez, M.A. Cancela, C. Riverol, E. Álvarez and J.M. Navaza: Chem. Eng. J. Vol. 78 (2000), p.13.

Google Scholar

[11] R. Maceiras, X.R. Nóvoa, E. Alvarez and M.A. Cancela: Chem. Eng. Process. Vol. 46 (2007), p.1006.

Google Scholar

[12] T.L. Donaldson and Y.N. Nguyen: Ind. Eng. Chem. Fundam. Vol. 19 (1980), p.260.

Google Scholar

[13] D. Barth, C. Tondre, G. Lappai and J.J. Dalpuech: Chem. Eng. Sci. Vol. 39 (1984), p.1753.

Google Scholar

[14] N. Haimour, A. Bidairan and O.C. Sandall: Chem. Eng. Sci. Vol. 42 (1987), p.1393.

Google Scholar

[15] R.J. Littel, G.F. Versteeg and W.P.M. Van Swaaij: AIChE J. Vol. 36 (1990), p.1633.

Google Scholar

[16] E.B. Rinker, S.S. Ashour and O.C. Sandall: Chem. Eng. Sci. Vol. 50 (1995), p.755.

Google Scholar

[17] P.V. Danckwerts and M.M. Sharma: Chem. Eng. Vol. 10 (1966), p. CE244.

Google Scholar

[18] E. Sada, H. Kumazawa and M.A. Butt: J. Chem. Eng. Data Vol. 23 (1978), p.161.

Google Scholar

[19] G.F. Versteeg, P.M.M. Blauwhoff and W.P.M. van Swaaij: Chem. Eng. Sci. Vol. 42 (1987), p.1103.

Google Scholar

[20] F. Camacho, S. Sánchez, R. Pacheco, R. Maceiras, M.D. La Rubia and A. Sánchez, in 7th World Congress of Chemical Engineering (2005).

Google Scholar

[21] Y.T. Shah, B.G. Kelkar, S.P. Godbole and W.D. Deckwer: AIChE J. Vol. 28 (1982), p.353.

Google Scholar

[22] G. Prentice, Electrochemical Engineering Principles. Prentice-Hall, Inc., New Jersey, USA, (1991).

Google Scholar

[23] U. Beginn: Prog. Polym. Sci. Vol. 28 (2003), p.1049.

Google Scholar