Numerical Simulation of Transient Temperature Fields in Solids Irradiated by Moving Gaussian and Donut Sources

Article Preview

Abstract:

This work presents a three-dimensional heat transfer model developed for laser material processing with a moving Gaussian and donut heat sources, using Comsol Multhiphysics 3.5 code. The laser beam, having a defined power distribution, strikes the surface of an opaque substrate of semi infinite length but finite width and depth moving with a uniform velocity in the positive axial direction. The solid dimension along the motion direction is assumed to be infinite or semi-infinite, while a finite width and thickness are considered. Thermal properties are considered temperature dependent. Surface heat losses toward the ambient are taken into account. The results are presented in terms of temperature profiles and thermal fields are given for some Biot and material thicknesses at a constant Peclet number.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 312-315)

Pages:

959-964

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Tanasawa and N. Lior: Heat and mass transfer in material processing (Hemisphere, 1992).

Google Scholar

[2] R. Viskanta and T.L. Bergman: Heat Transfer in Material Processing (in Handbook of Heat Transfer, Chap. 18, McGraw-Hill, 1998).

Google Scholar

[3] S.Z. Shuja, B.S. Yilbas and M. O. Budair: Numeric. Heat Transf. A Vol. 33 (1998), p.315.

Google Scholar

[4] N. Bianco and O. Manca: ASME HTD Vol. 366 (2000), p.285.

Google Scholar

[5] N. Bianco, O. Manca and S. Nardini: ASME HTD Vol. 369 (2001), p.11.

Google Scholar

[6] J.F. Li, L. Li and F.H. Stott: Int. J. Heat Mass Transf. Vol. 47 (2004), p.1159.

Google Scholar

[7] M.F. Modest and H. Abakians: J. Heat Transf. Vol. 108 (1986), p.597.

Google Scholar

[8] N. Bianco, O. Manca and S. Nardini: Two-dimensional Transient Analysis of Temperature Distribution in a Solid Irradiated by a Gaussian Laser Source (Proc. of ESDA04, paper n. ESDA2004-58286, 2004).

DOI: 10.1115/esda2004-58286

Google Scholar

[9] J.C. Rozzi, F.E. Pfefferkon, F.P. Incropera and Y.C. Shin: Int. J. Heat Mass Transf. Vol. 43 (2000), p.1409.

Google Scholar

[10] J.C. Rozzi, F.P. Incropera and Y.C. Shin: Int. J. Heat Mass Transf. Vol. 43 (2000), p.1425.

Google Scholar

[11] Z.B. Hou and R. Komanduri: Int. J. Heat Mass Transf. Vol. 43 (2000), p.1679.

Google Scholar

[12] B.S. Yilbas, S.Z. Shuja and M.S.J. Hashmi: J. Mat. Processing Tech. Vol. 136 (2003), p.12.

Google Scholar

[13] G. Gutierrez, and J. G . Araya: Temperature Distribution in a Finite Solid due to a Moving Laser Beam (Proc. of 2003 ASME IMECE, paper n. IMECE2003-42545, 2003).

DOI: 10.1115/imece2003-42545

Google Scholar

[14] N. Bianco, O. Manca and V. Naso: Numerical Analysis of Transient Temperature Fields in Solids by a Moving Heat Source (3rd Int. Conf. Heat Transfer, Fluid Mechanics Thermodynamics, 2004).

Google Scholar

[15] M. Leung: J. Phys. D: Appl. Phys. Vol. 34 (2001), p.3434.

Google Scholar

[16] D. Couëdel, P. Rogeon, P. Lemasson, M. Carin, J.C. Parpillon and R. Bertet: Int. J. Heat Mass Transf. Vol. 46 (2003), p.4553.

DOI: 10.1016/s0017-9310(03)00288-6

Google Scholar

[17] N. Bianco, O. Manca, S. Nardini and S. Tamburrino: Def. Diff. Forum Vol. 297-301 (2010), p.1445.

Google Scholar

[18] A.A. Minea, O. Manca, S. Nardini and S. Tamburrino: Transient Heat Conduction in Solids Irradiated by a Moving Heat Source with Combined Donut and Gaussian Distributions (Proc. of ISSIM 2009 Congress, 2009).

DOI: 10.4028/www.scientific.net/ddf.283-286.358

Google Scholar

[19] Metals Handbook (9th Ed., ASM, Metal Park, OH, 1981).

Google Scholar