Diffusivity of Hydrogen in ZnO Single Crystal

Article Preview

Abstract:

Hydrogen diffusivity in ZnO (0001) single crystal was investigated using electrical resistometry and nuclear reaction analysis (NRA). ZnO crystals were covered with a thin Pd over-layer and electrochemically charged with hydrogen. The net concentration of hydrogen determined by NRA was found to be in a reasonable agreement with the value estimated from the transported charge using the Faradays law. The hydrogen diffusion coefficient in ZnO was estimated from in-situ electrical resistivity measurements. Moreover, NRA investigations revealed existence of a subsurface layer with very high concentration of hydrogen (up to 40 at.%). Typical surface modification observed on hydrogen loaded crystal by light microscope indicates hydrogen-induced plastic deformation realized by a slip in the c-direction. Open-volume defects introduced by hydrogen-induced plastic deformation trap diffusing hydrogen and cause an enhancement of hydrogen concentration in the deformed subsurface layer.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 326-328)

Pages:

459-464

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. -J. Cho, and H. Morkoc: J. Appl. Phys. Vol. 98 (2005), p.041301.

DOI: 10.1063/1.1992666

Google Scholar

[2] G. Brauer, W. Anwand, D. Grambole, J. Genzer, W. Skorupa, J. Čížek, J. Kuriplach, I. Procházka, C.C. Ling, C.K. So, D. Schultz and D. Klimm: Phys. Rev. B Vol. 79 (2009), p.115212.

DOI: 10.1103/physrevb.79.115212

Google Scholar

[3] J. Čížek, 1, N. Žaludová, M. Vlach, S. Daniš, J. Kuriplach, I. Procházka, G. Brauer, W. Anwand, D. Grambole, W. Skorupa, R. Gemma, R. Kirchheim and A. Pundt: J. Appl. Phys. Vol. 103 (2008), p.053508.

DOI: 10.1063/1.2844479

Google Scholar

[4] C. G. Van de Walle: Phys. Rev. Lett. Vol. 85 (2000), pp.1012-33.

Google Scholar

[5] R. Kircheim: Prog. Mater. Sci. Vol. 32 (1988), p.261.

Google Scholar

[6] W.A. Lanford, in: Handbook of Modern Ion Beam Materials Analysis, edited by R. Tesmer and M. Nastasi, Materials Research Society, Pittsburg (1995) p.193.

Google Scholar

[7] I. Procházka, J. Čížek, W. Anwand, G. Brauer, D. Grambole and H Schmidt: J. Phys.: Conf. Series Vol. 262 (2011), p.012050.

Google Scholar

[8] S. Wagner, A. Pundt: Acta Mater. Vol. 58 (2010), p.1387.

Google Scholar

[9] J. Völkl and G. Alefeld, in: Hydrogen in metals I, edited by G. Alefeld and J. Völkl, Springer-Verlag, Berlin (1978) p.321.

DOI: 10.1007/3540087052_51

Google Scholar