Effect of Synthesis Duration on the Physicochemical Properties of Siliceous Mesoporous Molecular Sieve (Si-MMS)

Article Preview

Abstract:

Pure silica mesoporous molecular sieve (MMS) solid has been synthesized at 100°C by hydrothermal process. The effect of synthesis duration from 2 to 10 days has been investigated on the physicochemical properties of mesoporous molecular sieve. Samples were characterized by low angle XRD, N2 adsorption-desorption and HRTEM analysis. XRD patterns of the as-synthesized samples showed four well-defined diffraction peaks corresponding to 100, 110, 200 and 210 planes. These peaks are the fingerprint characteristics of MCM-41 mesoporous material. The high intensity diffraction peaks were observed in 8-days sample that define the high ordering of the pores and long range order. N2 adsorption-desorption results showed that all samples possessed a type IV isotherm having hysteresis loop of type H1 which is an identification of mesoporous material. Calcined samples exhibited high surface area i.e., 984-1036 m2 g-1, pore volume i.e., 1.00-1.13 cm3 g-1 and average pore diameter i.e., 3.04-3.30 nm. A hexagonal pore structure was found in the synthesized materials by HRTEM analysis, which confirms that the synthesized materials are MCM-41. HRTEM analysis showed the effect of synthesis duration on the materials and found that 8-days sample exhibited highly ordered hexagonal pore structure like honeycomb structure. All the samples were calcined at 550°C to remove the template and to study the changes in the mesoporous framework. The results showed that the mesoporous structure remained intact after calcination at 550°C, indicating that the mesoporous materials exhibit high thermal stability.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 326-328)

Pages:

647-653

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C. T-W. Chu, D. H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins and J.L. Schlenkert: J. Am. Chem. Soc. Vol. 114 (1992), p.10834.

DOI: 10.1021/ja00053a020

Google Scholar

[2] C.T. Kresge, M.E. Leonowicz, W.J. Roth, C.J. Vartuli, J.S. Beck: Nature Vol. 359 (1992), p.710.

Google Scholar

[3] K. Nazari, S. Shokrollahzadeh, A. Mahmoudi, F. Mesbahi, N.S. Matin, A.A. Moosavi-Movahedi: Journal of Molecular Catalysis A: Chemical Vol. 239 (2005), p.1.

DOI: 10.1016/j.molcata.2005.05.010

Google Scholar

[4] Y. Belmabkhout, R. Serna-Guerrero and A. Sayari: Chemical Engineering Science Vol. 64 (2009), p.3721.

Google Scholar

[5] J.M. Kim, J.H. Kwak, S. Jun, and R. Ryoo: J. Phys. Chem. Vol. 99 (1995), p.16742.

Google Scholar

[6] X. Feng, G.E. Fryxell, L. -Q. Wang, A.Y. Kim, J. Liu, and K.M. Kemner: Science Vol. 276 (1997), p.923.

Google Scholar

[7] T. Jiang, L. Lu, X. Yang. Q. Zhao, T. Tao, H. Yin and K Chen: J. Porous Mater. Vol. 15 (2008), p.67.

Google Scholar

[8] X.M. Tai, H.X. Wang and X.Q. Shi: Chinese Chemical Letters Vol. 16 (2005), p.843.

Google Scholar

[9] M.P. Mokhonoana and N.J. Coville: J. Sol-Gel Sci. Technol. Vol. 54 (2010), p.83.

Google Scholar

[10] T.R. Gaydhankar, U.S. Taralkar, R.K. Jha, P.N. Joshi and R. Kumar: Catalysis Communication Vol. 6 (2005), p.361.

Google Scholar

[11] K. Casiers, T. Linssen, M. Benjelloun, K. Schrijnemakers, P. Van Der Voort, P. Cool, and E. F. Vansant: Chem. Mater, Vol. 14 (2002), p.2317.

DOI: 10.1021/cm0112892

Google Scholar

[12] J.S. Beck, J.C. Vartuli, G.J. Kennedy, C.T. Kresge, W.J. Roth and S.E. Schramm: Chem. Mater, Vol. 6 (1994), p.1816.

Google Scholar

[13] S.K. Jana, R. Nishida, K. Shindo, T. Kugita, and S. Namba: Microporous and Mesoporous Materials Vol. 68 (2004), p.133.

DOI: 10.1016/j.micromeso.2003.12.010

Google Scholar

[14] A. Sayari and Y. Yang: J. Phys. Chem. B Vol. 24 (1999), p.3651.

Google Scholar

[15] A. Corma. Q. Kan, M.T. Navarro, J.P. Pariente, F. Rey: Chem. Mater, Vol. 9 (1997), p.2123.

Google Scholar

[16] C. -F. Cheng, D.H. Park and J. Klinowski: J. Chem. Soc. Faraday Trans. Vol. 93 (1997), p.193.

Google Scholar

[17] J.L. Blin, C. Otjacques, G. Herrier and B. -L. Su: International Journal of Inorganic Materials Vol. 3 (2001), p.75.

Google Scholar

[18] I.V. Asaftei, N. Bilba, L.M. Birsa and C. Luchian: Seria Chimie, Tomul XVI (2008), p.47.

Google Scholar

[19] G.K. Chuah, X. Hu, P. Zhan, S. Jaenicke: Journal of Molecular Catalysis A: Chemical Vol. 181 (2002), p.25.

Google Scholar

[20] S. Brunauer, P.H. Emmett, and E. Teller: J. Am. Chem. Soc., Vol. 60 (1938), p.309.

Google Scholar

[21] E.P. Barrett, L.G. Joyner and P.P. Halenda: J. Am. Chem. Soc. Vol. 60 (1951), p.373.

Google Scholar

[22] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol and T. Siemieniewska: Pure & App. Chem. Vol. 57 (1985), p.603.

DOI: 10.1002/9783527619474.ch11

Google Scholar

[23] L. Liu, G.Y. Zhang and J.X. Dong: Chinese Chemical Letters Vol. 15 (2004), p.737.

Google Scholar

[24] F. Rouquerol, J. Rouquerol and K. Sing: Adsorption y powders and porous solids (Academic Press: San Diego, USA, 1999).

DOI: 10.1002/vipr.19990110317

Google Scholar

[25] A.A. Romero, M.D. Alba, W. Zhou and J. Klinowski: J. Phys. Chem. B, Vol. 101 (1997), p.5294.

Google Scholar

[26] M. Kruk and M. Jaroniec: Langmuir Vol. 13 (1997), p.626.

Google Scholar