Precipitation Processes in Mg-Y-Nd Alloys

Article Preview

Abstract:

Successive precipitation processes in solution treated Mg3Y3Nd alloy were studied by electrical resistometry, by differential scanning calorimetry and by microhardness. The results were compared to those in the commercial WE43 alloy. Five various phases known from the Mg-Gd-and Mg-Nd-type decomposition sequences form, dissolute or transform in the Mg3Y3Nd alloy. The main difference in the WE43 precipitation sequence is the absence of the β1 phase particles. Electron microscopy confirmed that not the phase type of hardening particles but their morphology, size and orientation to the matrix determine the hardening effectiveness. Differential scanning calorimetry revealed exothermic effects connected to precipitation processes. Apparent activation energies of individual precipitation processes correspond to those in the MgTbNd and in MgNd alloys.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 334-335)

Pages:

155-160

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Elektron WE43 Datasheet 467: Magnesium Elektron UK, www. magnesium-elektron. com, 2. 5. (2012).

Google Scholar

[2] Elektron WE54 Datasheet 466: Magnesium Elektron UK, www. magnesium-elektron. com, 2. 5. (2012).

Google Scholar

[3] B.L. Mordike, T. Ebert,: Mater. Sci. Eng. A 302 (2001), p.37.

Google Scholar

[4] B.L. Mordike: Mater. Sci. Eng. A 324 (2002), p.103.

Google Scholar

[5] T. Rzychoń, J. Michalska, A. Kiełbus: J. Achiev. Mater. Manufact. Eng. 21 (2007) 51-54.

Google Scholar

[6] F. Zucchi, V. Grassi, A. Frignani, C. Monticelli, G. Trabanelli: J. Appl. Electroch. 36 (2006), p.195.

Google Scholar

[7] X.N. Gu, W. R . Zhou, Y.F. Zheng, Y. Cheng, S.C. Wei, S.P. Zhong, T. F . Xi, L.J. Chen: Acta Biomater. 6 (2010), p.4605.

Google Scholar

[8] B. Smola, L. Joska, V. Březina, I. Stulíková, F. Hnilica: Mater. Sci. Eng. C 32 (2012), p.659.

Google Scholar

[9] G.W. Lorimer, in: Proceedings Magnesium Technology, Institute of Metals, London (1986), p.47.

Google Scholar

[10] J. F. Nie, B. C. Muddle: Acta Mater. 48 (2000), p.1691.

Google Scholar

[11] B. Smola, I. Stulíková, F. von Buch, B. L. Mordike: Mater. Sci. Eng. A 324 (2002), p.113.

Google Scholar

[12] B. L. Mordike, I. Stulíková, B. Smola: Metall. Mater. Trans. A 36 (2005), p.1729.

Google Scholar

[13] P. J. Apps, H. Karimzadeh, J. F. King, G.W. Lorimer,: Scripta Mater. 48 (2003), p.475.

Google Scholar

[14] Q. Peng, J. Wang, Y. Wu, L. Wang: Mater. Sci. Eng. A 433 (2006), p.133.

Google Scholar

[15] D. Li, J. Dong, X. Zeng, C. Lu, W. Ding,: J. Alloys Compd. 439 (2007), p.254.

Google Scholar

[16] P. J . Apps, H. Karimzadeh, J. F. King, G.W. Lorimer,: Scripta Mater. 48 (2003), p.1023.

Google Scholar

[17] V. Neubert, I. Stulíková, B. Smola, B.L. Mordike, M. Vlach, A. Bakkar, J. Pelcová: Mater. Sci. Eng. A 462 (2007), p.329.

DOI: 10.1016/j.msea.2005.11.077

Google Scholar

[18] P. Vostrý, B. Smola, I. Stulíková, F. von Buch, B.L. Mordike: Phys. Stat. Sol. (a) 175 (1999), p.491.

DOI: 10.1002/(sici)1521-396x(199910)175:2<491::aid-pssa491>3.0.co;2-f

Google Scholar

[19] B. Smola, I. Stulíková,: Kovove Mater. 42 (2004), p.301.

Google Scholar

[20] T. B. Massalski: Binary Alloys Phase Diagrams. 2nd ed. Materials Park, OH, American Soc. for Materials (1990).

Google Scholar

[21] B. Smola, I. Stulíková, J. Černá, J. Čížek, M. Vlach: Phys. Stat. Sol. A 208 (2011), p.2741.

DOI: 10.1002/pssa.201127296

Google Scholar

[22] M.J. Starink: Thermochim. Acta 404 (2003), p.163.

Google Scholar

[23] G. Riontino, D. Lussana, M. Massazza: J. Thermal Anal. Calorim. 83 (2006), p.643.

Google Scholar

[24] T.J. Pike, B. Noble: J. Less Common Met. 30 (1973), p.63.

Google Scholar