Neuro-Fuzzy Adaptive PID Control of Thermoelectric Module for Metal Hydride Reactor

Article Preview

Abstract:

This paper presents a neuro-fuzzy proportional integral derivative (PID) control technique for improving thermodynamic performance of a metal hydride (MH) reactor via heating/cooling effects generated by a thermoelectric module. The thermal behavior of the MH reactor coupled with a thermoelectric module is numerically studied by mathematical representations of genuine practical applications. It is found that the integrated system has strong nonlinearity owing to thermal characteristics. To obtain the desired performances of the MH reactor, a neuro-fuzzy PID control is used in real-time implementation. A non-linear optimization of a back-propagation technique is applied for fine-tuning the parameters of the neuro-fuzzy PID controller. The simulated results show the effectiveness of the proposed technique compared to conventional PID control.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 334-335)

Pages:

182-187

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. S. Jemini: Study of two-dimensional heat and mass transfer during absorption in a metal hydrogen reactor, International Journal of Hydrogen Energy 20 (1995) 43-52.

DOI: 10.1016/0360-3199(93)e0007-8

Google Scholar

[2] A. Zuttel: Materials for hydrogen storage, Materials today (2003) 18-27.

Google Scholar

[3] A. Zuttel: Hydrogen in solids and the materials challenge for hydrogen storage, Invited talk, 13th International Conference on Rapidly Quenched and Metastable Materials: Dresden, Germany (2008).

Google Scholar

[4] M. Bououdina, D. Grant, G. Walker: Review on hydrogen absorbing materials structure, microstructure, and thermodynamic properties, International Journal of Hydrogen Energy 31 (2006) pp.177-182.

DOI: 10.1016/j.ijhydene.2005.04.049

Google Scholar

[5] R.T. Martorana: Thermoelectric temperature control of instrumentation: A sample design, IEEE Trans. Ind. Electron. Control Instrum., IECI-22-1, 69-75.

DOI: 10.1109/tieci.1975.351224

Google Scholar

[6] B. J. Huang and C. L. Duang; System dynamic model and temperature control of a thermoelectric cooler, International Journal of Refrigeration, 23 (2000) 197-207.

DOI: 10.1016/s0140-7007(99)00045-6

Google Scholar

[7] M. Khalid and S. Omatu: A neural network controller for a temperature control system, IEEE Control Sys. Mag., Vol. 12, No. 3, pp.58-64, Jun. (1992).

Google Scholar

[8] M. Khalid, S. Omatu, and R. Yusof: MIMO furnace control with neural networks, IEEE Trans. Control Syst. Technol., Vol. 1, No. 4, pp.238-245, Dec. (1993).

DOI: 10.1109/87.260269

Google Scholar

[9] C. T. Lin, C. F. Juang, and C. P. Li: Temperature control with a neural fuzzy inference network, IEEE Trans. Syst., Man., Cybern., C: Appl. Rev., Vol. 29, No. 3, (1999) pp.440-451.

DOI: 10.1109/5326.777078

Google Scholar

[10] F. J. Lin and R. J. Wai: Hybrid control using recurrent fuzzy neural network for linear induction motor servo drive, IEEE Trans. Fuzzy Syst., Vol. 9, No. 1, 102-115, Feb. (2001).

DOI: 10.1109/91.917118

Google Scholar

[11] T. Leephakpreeda: Mathematical modeling of pneumatic artificial muscle actuation via hydrogen driving metal hydride-LaNi5, Journal of Bionic Engineering, Vol. 9, No. 1, (2012), pp.110-118.

DOI: 10.1016/s1672-6529(11)60103-0

Google Scholar

[12] T. Leephakpreeda: Experimental determination of thermoelectric-module parameters and modeling for cooling/heating control design, Experimental Techniques, DOI: 10. 1111/j. 1747-1567. 2011. 00762. x.

DOI: 10.1111/j.1747-1567.2011.00762.x

Google Scholar