Studies of Knight Shifts and Hyperfine Structure Constants of Tl2Ba2CuO6+y

Article Preview

Abstract:

The Knight shifts and hyperfine structure constants of Tl2Ba2CuO6+y are theoretically studied from the high order perturbation formulas of these quantities for a tetragonally elongated octahedral 3d9 cluster. The calculation results reveal good agreement with the observed values. The obvious anisotropies of the Knight shifts can be ascribed to the local tetragonal elongation of the Cu2+ site. The results and the local structure of the system are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 337-338)

Pages:

49-53

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.G. Togonidze, V.N. Kopylov, N.N. Kolesnikov, I.F. Schegolev, Czechoslovak Journal of Physics, 46 (1996) 1379.

DOI: 10.1007/bf02562804

Google Scholar

[2] D.H. Kim, H.J. Kim, S.I. Kim, International Journal of Modern Physics B, 19 (2005) 443.

Google Scholar

[3] M.M. French, N.E. Hussey, Proceedings of the National Academy of Science of the USA, 105 (2008) 37.

Google Scholar

[4] P.M. Shirage, D.D. Shivagan, S.H. Pawar, Journal of Superconductivity and Novel Magnetism, 22 (2009) 455.

Google Scholar

[5] E.M. Chia, J.X. Zhu, D. Talbayev, A. J. Taylor, Physica Status Solidi RL, 5[1] (2011) 1.

Google Scholar

[6] Nawazish A. Khan, M. Mumtaz, A.A. Khurram, Journal of Applied Physics, 104 (2008) 033916.

Google Scholar

[7] M. Mumtaz, N.A. Khan, S. Khan, Journal of Applied Physics, 111 (2012) 013920.

Google Scholar

[8] N.H. Mohammed, A.I. Abou-Aly, I.H. Ibrahim, R. Awad, M. Rekaby, Journal of Superconductivity and Novel Magnetism, 24 (2011) 1463.

Google Scholar

[9] H. Zhao, X. Wang, J.Z. Wu, Superconductor Science and Technology, 21 (2008) 085012.

Google Scholar

[10] R.S. Kalubarme, M.B. Kadam, S.H. Pawar, Journal of Alloys and Compounds, 479 (2009) 732.

Google Scholar

[11] Y. Kitaoka, K. Fujiwara, K. Ishida , K. Asayama, Y. Shimakawa, T. Manako, Y. Kubo, Physica C, 179 (1991) 107.

DOI: 10.1016/0921-4534(91)90018-t

Google Scholar

[12] A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, London 1970.

Google Scholar

[13] A.S. Chakravarty, Introduction to the Magnetic Properties of Solids, Wiley-Interscience Publication, New York, 1980.

Google Scholar

[14] W. H. Wei, S. Y. Wu, and H. N. Dong, Zeitschrift fur Naturforschung, A60 (2005) 541.

Google Scholar

[15] M.T. Barriuso, J.A. Aramburu, M.J. Moreno, Journal of Physics - Condensed Matter, 14 (2002) 6521.

Google Scholar

[16] J.S. Griffith,The Theory of Transition-Metal Ions, Cambridge University Press, London, 1964.

Google Scholar

[17] M. Itoh, M. Sugahara, T. Yamauchi, Y. Ueda, Physical Review B, 53 (1996) 11606.

Google Scholar

[18] M. Itoh, S. Hirashima and K. Motoya, Physical Review B, 52 (1995) 3410.

Google Scholar

[19] Y. Shimakawa, Y. Kubo, T. Manako, and H. Igarashi, F. Izumi, H. Asano, Physical Review B, 42 (1990) 10165.

Google Scholar

[20] D.J. Newman and B. Ng, Reports on Progress in Physics, 52 (1989) 699.

Google Scholar

[21] C. Rudowicz, Z.Y. Yang, Y.Y. Yeung and J. Qin, Journal of Physics and Chemistry of Solids, 64 (2004) 1419.

Google Scholar

[22] D.J. Newman, D.C. Pryce and W.A. Runciman, American Mineralogist, 63 (1978) 1278.

Google Scholar

[23] Z.Y. Yang, C. Rudowicz and Y.Y. Yeung, Physica B, 348 (2004) 151.

Google Scholar

[24] B.R. McGarvey, Journal of Physical Chemistry, 71 (1967) 51.

Google Scholar

[25] A. Abragam, M.H.I. Pryce, Proceedings of the Royal Society of London A, 206 (1951) 164.

Google Scholar

[26] S. Fraga, K.M.S. Saxena, J. Karwowski, Handbook of Atomic Data, Elsevier Press, New York, 1976.

Google Scholar