Some Developments on Cup Anemometer Aerodynamics

Article Preview

Abstract:

In the present study the geometry of cups is experimentally studied through anemometer performance. This performance is analyzed in two different ways. On the one hand the anemometer transfer function between cases is compared. On the other hand the stationary rotation speed is decomposed into constant and harmonic terms, the comparison being established between the last ones. Results indicate that some cup shapes can improve the uniformity of anemometer rotation, this fact being important to reduce degradation due to ageing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-185

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Pindado, E. Vega, A. Martínez, E. Meseguer, S. Franchini, I. Sarasola, Analysis of calibration results from cup and propeller anemometers. Influence on wind turbine Annual Energy Production (AEP) calculations, Wind Energy 14 (2011) 119-132.

DOI: 10.1002/we.407

Google Scholar

[2] S. Pindado, A. Barrero-Gil, A. Sanz, Cup anemometers' loss of performance due to ageing processes, and its effect on Annual Energy Production (AEP) estimates, Energies 5 (2012) 1664-1685.

DOI: 10.3390/en5051664

Google Scholar

[3] S. Pindado, A. Sanz, A. Wery, Deviation of cup and propeller anemometer calibration results with air density, Energies 5 (2012) 683-701.

DOI: 10.3390/en5030683

Google Scholar

[4] M. Sanuki, S. Kimura, H. Obana, The performance of half-covered cup-anemometers. Papers in Meteorology and Geophysics, Meteorological Research Institute of Japan 14 (1963) 52-57.

DOI: 10.2467/mripapers1950.14.1_52

Google Scholar

[5] S. Ramachandran, A theoretical study of cup and vane anemometers, Q. J. R. Meteorol. Soc. 95 (1969) 163-180.

DOI: 10.1002/qj.49709540311

Google Scholar

[6] J. Kondo, G. Naito, Y. Fujinawa, Response of cup anemometer in turbulence, J. Meteorol. Soc. Japan 49 (1971) 63-74.

Google Scholar

[7] E.L. Deacon, The over-estimation error of cup anemometers in fluctuating winds, J. Sci. Instr. 28 (1951) 231-234.

DOI: 10.1088/0950-7671/28/8/303

Google Scholar

[8] N.E. Busch, L. Kristensen, Cup anemometer overspeeding, J. Appl. Meteor. 15 (1976) 1328-1332.

DOI: 10.1175/1520-0450(1976)015<1328:cao>2.0.co;2

Google Scholar

[9] J. C. Wyngaard, Cup, propeller, vane, and sonic anemometers in turbulence research, Annual Review of Fluid Mechanics 13 (1981) 399-423.

DOI: 10.1146/annurev.fl.13.010181.002151

Google Scholar

[10] R.S. Hunter, The accuracy of cup anemometer calibration with particular regard to testing wind turbines, Wind Engineering 14 (1990) 32-43.

Google Scholar

[11] S. Pindado, J. Pérez, S. Avila-Sanchez, On cup anemometer rotor aerodynamics, Sensors 12 (2012) 6198-6217.

DOI: 10.3390/s120506198

Google Scholar

[12] L. Kristensen, Cup anemometer behavior in turbulent environments, Journal of Atmospheric and Oceanic Technology 15 (1998) 5-17.

DOI: 10.1175/1520-0426(1998)015<0005:cabite>2.0.co;2

Google Scholar

[13] J. -Å. Dahlberg, T.F. Pedersen, P. Busche, ACCUWIND -Methods for Classification of Cup Anemometers, Risø–R–1555 (EN), Risø National Laboratory, Roskilde, Denmark, (2006).

Google Scholar

[14] Measuring Network of Wind Energy Institutes (MEASNET), Anemometer Calibration Procedure, Version 2, (2009).

Google Scholar