Constructal Design of Y-Shaped Conductive Pathways for Cooling a Heat-Generating Body

Article Preview

Abstract:

This paper applies constructal design to obtain numerically the configuration that facilitates the access of the heat that flows through Y-shaped pathways of a high-conductivity material embedded within a square-shaped heat-generating medium of low-conductivity to cooling this finite-size volume. The objective is to minimize the maximal excess of temperature of the whole system, i.e., the hot spots, independent of where they are located. The total volume and the volume of the material of high thermal conductivity are fixed. Results show that there is no universal optimal geometry for the Y-shaped pathways for every value of high conductivity investigated here. For small values of high thermal conductivity material the best shape presented a well defined format of Y. However, for larger values of high thermal conductivity the best geometry tends to a V-shaped (i.e., the length of stem is suppressed and the bifurcated branches penetrates deeply the heat-generating body towards the superior corners). A comparison between the Y-shaped pathway configuration with a simpler I-shaped blade and with X-shaped configuration was also performed. For constant values of area fraction occupied with a high-conductivity material and the ratio between the high thermal conductivity material and low conductivity of the heat-generating body (φ = 0.1 and = 100) the Y-shaped pathways performed 46% and 13% better when compared to I-shaped and X-shaped pathway configuration, respectively. The best thermal performance is obtained when the highest temperatures (hot spots) are better distributed in the temperature field, i.e., according to the constructal principle of optimal distribution of imperfections.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

245-260

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Bejan, J. P. Zane, Design in Nature. New York, Doubleday, (2012).

Google Scholar

[2] A. Bejan, S. Lorente, Design with Constructal Theory, Wiley, Hoboken, (2008).

Google Scholar

[3] A. Bejan, Shape and Structure, from Engineering to Nature, Cambridge University Press, Cambridge, UK, (2000).

Google Scholar

[4] A. Bejan, S. Lorente, The constructal law and the evolution of design in nature, Phys. Life Rev. 8 (2011) 209-240.

Google Scholar

[5] A. Bejan, S. Lorente, The constructal law of design and evolution in nature, Phil. Trans. R. Soc. B 365 (2010) 1335-1347.

DOI: 10.1098/rstb.2009.0302

Google Scholar

[6] A. F. Miguel, Quantitative unifying theory of natural design of flow systems: emergence and evolution, in: L.A.O. Rocha, S. Lorente, A. Bejan (Eds. ), Constructal Law and the Unifying Principle of Design, Springer, New York, 2013, pp.21-38.

DOI: 10.1007/978-1-4614-5049-8_2

Google Scholar

[7] L. Chen, Progress in the study on constructal theory and its applications, Sci. China Tech Sci. 55 (3) (2012) 802-820.

DOI: 10.1007/s11431-011-4701-9

Google Scholar

[8] A. Bejan, V. Badescu, A. De Vos, Constructal theory of economics structure generation in space and time, Energy Convers. Manage. 41 (2000) 1429 – 1451.

DOI: 10.1016/s0196-8904(00)00038-8

Google Scholar

[9] A. Bejan, S. Lorente, Constructal law of design and evolution: Physics, biology, technology, and society, J. Appl. Phys. 113 (15) (2013) 151301 - 151321.

DOI: 10.1063/1.4798429

Google Scholar

[10] A. Beyene, J. Peffley, Constructal Theory, Adaptive Motion, and Their Theoretical Application to Low-Speed Turbine Design, J. Energ Eng-ASCE 135 (4) (2009) 112-118.

DOI: 10.1061/(asce)0733-9402(2009)135:4(112)

Google Scholar

[11] D. –H. Kang, S. Lorente, A. Bejan, Constructal Dentritic Configuration for the Radiation Heating of a Solid Stream, J. Appl. Phys. 107 (2010) 114910 - 114917.

DOI: 10.1063/1.3429195

Google Scholar

[12] Y. Kim, S. Lorente and A. Bejan, Constructal Multi-Tube Configuration for Natural and Forced Convection in Cross-Flow, Int. J. Heat Mass Transfer 53 (2010) 5121-5128.

DOI: 10.1016/j.ijheatmasstransfer.2010.07.053

Google Scholar

[13] Y. Kim, S. Lorente and A. Bejan, Steam Generator Structure: Continuous Model and Constructal Design, Int. J. Energy Res. 35 (2011) 336-345.

DOI: 10.1002/er.1694

Google Scholar

[14] A. V. Azad and M. Amidpour, Economic Optimization of Shell and Tube Heat Exchanger based on Constructal Theory, Energy 36 (2011) 1087-1096.

DOI: 10.1016/j.energy.2010.11.041

Google Scholar

[15] L. Chen, Progress in study on constructal theory and its applications, Sci. China: Technol. Sci. 55 (3) (2012) 802–820.

DOI: 10.1007/s11431-011-4701-9

Google Scholar

[16] L. Chen, Z. Xie, F. Sun, Multiobjective constructal optimization of an insulating wall combining heat flow, strength and weight, Int. J. Therm. Sci. 50 (9) (2011) 1782–1789.

DOI: 10.1016/j.ijthermalsci.2011.03.022

Google Scholar

[17] S. Wei, L. Chen, F. Sun, The volume-point constructal optimization for discrete variable cross-section conducting path, Appl. Energy 86 (7–8) (2009) 1111–1118.

DOI: 10.1016/j.apenergy.2008.06.010

Google Scholar

[18] Z. Xie, L. Chen, F. Sun, Geometry optimization of T-shaped cavities according to constructal theory, Math. Comput. Model. 52 (9–10) (2010) 1538–1546.

DOI: 10.1016/j.mcm.2010.06.017

Google Scholar

[19] Z. Xie, L. Chen, F. Sun, Constructal optimization of twice level Y-shaped assemblies of fins by taking maximum thermal resistance minimization as objective, Sci. China: Technol. Sci. 53 (10) (2010) 2756–2764.

DOI: 10.1007/s11431-010-4037-x

Google Scholar

[20] Q. Xiao, L. Chen, F. Sun, Constructal optimization for 'disc-to-point', heat conduction without the premise of optimized last-order construct, Int. J. Therm. Sci. 50 (6) (2011) 1031–1036.

DOI: 10.1016/j.ijthermalsci.2011.01.016

Google Scholar

[21] G. Lorenzini and L. A. O. Rocha, Constructal design of Y-shaped assembly of fins, Int. J. Heat Mass Transfer 49 (2006) 4552-4557.

DOI: 10.1016/j.ijheatmasstransfer.2006.05.019

Google Scholar

[22] G. Lorenzini, R. L. Corrêa, E. D. dos Santos, L. A. O. Rocha, Constructal design of complex assembly of fins, ASME J Heat Transfer 133 (2011) 081902 - 081909.

DOI: 10.1115/1.4003710

Google Scholar

[23] C. Biserni, L.A.O. Rocha, G. Stanescu, E. Lorenzini, Constructal H-shaped cavities according to Bejan's theory, Int. J. Heat Mass Transfer 50 (2007) 2132–2138.

DOI: 10.1016/j.ijheatmasstransfer.2006.11.006

Google Scholar

[24] G. Lorenzini, C. Biserni, L. A. Isoldi, E. D. dos Santos, L. A. O. Rocha, Constructal Design Applied to the Geometric Optimization of Y-shaped Cavities Embedded in a Conducting Medium, J. Electron. Packaging 133 (2011) 041008-1 – 041008-8.

DOI: 10.1115/1.4005296

Google Scholar

[25] G. Lorenzini, F. L. Garcia, E. D. dos Santos, C. Biserni and L. A. O. Rocha, Constructal Design Applied to the Optimization of Complex Geometries: T-Y-Shaped Cavities with Two Additional Lateral Intrusions Cooled by Convection, Int. J. Heat Mass Transfer 55 (2012).

DOI: 10.1016/j.ijheatmasstransfer.2011.10.057

Google Scholar

[26] G.A. Ledezma, A. Bejan, M.R. Errera, Constructal tree networks for heat transfer, J. Appl. Phys. 82 (1) (1997) 89–100.

DOI: 10.1063/1.365853

Google Scholar

[27] M. Almogbel, A. Bejan, Conduction trees with spacing at tips, Int. J. Heat Mass Transfer 42 (1999) 3739–3756.

DOI: 10.1016/s0017-9310(99)00051-4

Google Scholar

[28] A. Alebrahim, A. Bejan, Constructal trees of circular fins for conductive and convective heat transfer, Int. J. Heat Mass Transfer 42 (1999) 3585–3597.

DOI: 10.1016/s0017-9310(99)00021-6

Google Scholar

[29] M. Almogbel, A. Bejan, Cylindrical trees of pin fins, Int. J. Heat Mass Transfer 43 (2000) 4285–4297.

DOI: 10.1016/s0017-9310(00)00049-1

Google Scholar

[30] L.A.O. Rocha, S. Lorente, A. Bejan, Constructal design for cooling a disc-shaped area by conduction, Int. J. Heat Mass Transfer 45 (2002) 1643–1652.

DOI: 10.1016/s0017-9310(01)00269-1

Google Scholar

[31] L. Ghodoossi, N. Egrican, Conductive cooling of triangular shaped electronics using constructal theory, Energy Convers. Manage. 45 (2004) 811–828.

DOI: 10.1016/s0196-8904(03)00190-0

Google Scholar

[32] A.K. Da Silva, C. Vasile, A. Bejan, Disc cooled with high-conductivity inserts that extend inward from the perimeter, Int. J. Heat Mass Transfer 47 (2004) 4257–4263.

DOI: 10.1016/j.ijheatmasstransfer.2004.04.024

Google Scholar

[33] L.A.O. Rocha, S. Lorente, A. Bejan, Conduction tree networks with loops for cooling a heat generating volume, Int. J. Heat Mass Transfer 49 (2006) 2626–2635.

DOI: 10.1016/j.ijheatmasstransfer.2006.01.017

Google Scholar

[34] L. Kuddusi, J.C. Denton, Analytical solution for heat conduction in composite slabs and its implementation in constructal solution for cooling of electronics, Energy Convers. Manage. 48 (2007) 1089–1105.

DOI: 10.1016/j.enconman.2006.10.024

Google Scholar

[35] G. Lorenzini, C. Biserni, L. A. O. Rocha, Constructal design of X-shaped conductive pathways for cooling a heat-generating body, Int. J. Heat Mass Transf. 58 (2013) 513-520.

DOI: 10.1016/j.ijheatmasstransfer.2012.11.040

Google Scholar

[36] G. Lorenzini, C. Biserni, L. A. O. Rocha, Constructal design of non-uniform X-shaped conductive pathways for cooling, Int. J. Thermal Sci. 71 (2013) 140-147.

DOI: 10.1016/j.ijthermalsci.2013.04.021

Google Scholar

[37] MATLAB, User's Guide, Version 6. 0. 088, Release 12, The Mathworks Inc., (2000).

Google Scholar