[1]
A. Bejan, J. P. Zane, Design in Nature. New York, Doubleday, (2012).
Google Scholar
[2]
A. Bejan, S. Lorente, Design with Constructal Theory, Wiley, Hoboken, (2008).
Google Scholar
[3]
A. Bejan, Shape and Structure, from Engineering to Nature, Cambridge University Press, Cambridge, UK, (2000).
Google Scholar
[4]
A. Bejan, S. Lorente, The constructal law and the evolution of design in nature, Phys. Life Rev. 8 (2011) 209-240.
Google Scholar
[5]
A. Bejan, S. Lorente, The constructal law of design and evolution in nature, Phil. Trans. R. Soc. B 365 (2010) 1335-1347.
DOI: 10.1098/rstb.2009.0302
Google Scholar
[6]
A. F. Miguel, Quantitative unifying theory of natural design of flow systems: emergence and evolution, in: L.A.O. Rocha, S. Lorente, A. Bejan (Eds. ), Constructal Law and the Unifying Principle of Design, Springer, New York, 2013, pp.21-38.
DOI: 10.1007/978-1-4614-5049-8_2
Google Scholar
[7]
L. Chen, Progress in the study on constructal theory and its applications, Sci. China Tech Sci. 55 (3) (2012) 802-820.
DOI: 10.1007/s11431-011-4701-9
Google Scholar
[8]
A. Bejan, V. Badescu, A. De Vos, Constructal theory of economics structure generation in space and time, Energy Convers. Manage. 41 (2000) 1429 – 1451.
DOI: 10.1016/s0196-8904(00)00038-8
Google Scholar
[9]
A. Bejan, S. Lorente, Constructal law of design and evolution: Physics, biology, technology, and society, J. Appl. Phys. 113 (15) (2013) 151301 - 151321.
DOI: 10.1063/1.4798429
Google Scholar
[10]
A. Beyene, J. Peffley, Constructal Theory, Adaptive Motion, and Their Theoretical Application to Low-Speed Turbine Design, J. Energ Eng-ASCE 135 (4) (2009) 112-118.
DOI: 10.1061/(asce)0733-9402(2009)135:4(112)
Google Scholar
[11]
D. –H. Kang, S. Lorente, A. Bejan, Constructal Dentritic Configuration for the Radiation Heating of a Solid Stream, J. Appl. Phys. 107 (2010) 114910 - 114917.
DOI: 10.1063/1.3429195
Google Scholar
[12]
Y. Kim, S. Lorente and A. Bejan, Constructal Multi-Tube Configuration for Natural and Forced Convection in Cross-Flow, Int. J. Heat Mass Transfer 53 (2010) 5121-5128.
DOI: 10.1016/j.ijheatmasstransfer.2010.07.053
Google Scholar
[13]
Y. Kim, S. Lorente and A. Bejan, Steam Generator Structure: Continuous Model and Constructal Design, Int. J. Energy Res. 35 (2011) 336-345.
DOI: 10.1002/er.1694
Google Scholar
[14]
A. V. Azad and M. Amidpour, Economic Optimization of Shell and Tube Heat Exchanger based on Constructal Theory, Energy 36 (2011) 1087-1096.
DOI: 10.1016/j.energy.2010.11.041
Google Scholar
[15]
L. Chen, Progress in study on constructal theory and its applications, Sci. China: Technol. Sci. 55 (3) (2012) 802–820.
DOI: 10.1007/s11431-011-4701-9
Google Scholar
[16]
L. Chen, Z. Xie, F. Sun, Multiobjective constructal optimization of an insulating wall combining heat flow, strength and weight, Int. J. Therm. Sci. 50 (9) (2011) 1782–1789.
DOI: 10.1016/j.ijthermalsci.2011.03.022
Google Scholar
[17]
S. Wei, L. Chen, F. Sun, The volume-point constructal optimization for discrete variable cross-section conducting path, Appl. Energy 86 (7–8) (2009) 1111–1118.
DOI: 10.1016/j.apenergy.2008.06.010
Google Scholar
[18]
Z. Xie, L. Chen, F. Sun, Geometry optimization of T-shaped cavities according to constructal theory, Math. Comput. Model. 52 (9–10) (2010) 1538–1546.
DOI: 10.1016/j.mcm.2010.06.017
Google Scholar
[19]
Z. Xie, L. Chen, F. Sun, Constructal optimization of twice level Y-shaped assemblies of fins by taking maximum thermal resistance minimization as objective, Sci. China: Technol. Sci. 53 (10) (2010) 2756–2764.
DOI: 10.1007/s11431-010-4037-x
Google Scholar
[20]
Q. Xiao, L. Chen, F. Sun, Constructal optimization for 'disc-to-point', heat conduction without the premise of optimized last-order construct, Int. J. Therm. Sci. 50 (6) (2011) 1031–1036.
DOI: 10.1016/j.ijthermalsci.2011.01.016
Google Scholar
[21]
G. Lorenzini and L. A. O. Rocha, Constructal design of Y-shaped assembly of fins, Int. J. Heat Mass Transfer 49 (2006) 4552-4557.
DOI: 10.1016/j.ijheatmasstransfer.2006.05.019
Google Scholar
[22]
G. Lorenzini, R. L. Corrêa, E. D. dos Santos, L. A. O. Rocha, Constructal design of complex assembly of fins, ASME J Heat Transfer 133 (2011) 081902 - 081909.
DOI: 10.1115/1.4003710
Google Scholar
[23]
C. Biserni, L.A.O. Rocha, G. Stanescu, E. Lorenzini, Constructal H-shaped cavities according to Bejan's theory, Int. J. Heat Mass Transfer 50 (2007) 2132–2138.
DOI: 10.1016/j.ijheatmasstransfer.2006.11.006
Google Scholar
[24]
G. Lorenzini, C. Biserni, L. A. Isoldi, E. D. dos Santos, L. A. O. Rocha, Constructal Design Applied to the Geometric Optimization of Y-shaped Cavities Embedded in a Conducting Medium, J. Electron. Packaging 133 (2011) 041008-1 – 041008-8.
DOI: 10.1115/1.4005296
Google Scholar
[25]
G. Lorenzini, F. L. Garcia, E. D. dos Santos, C. Biserni and L. A. O. Rocha, Constructal Design Applied to the Optimization of Complex Geometries: T-Y-Shaped Cavities with Two Additional Lateral Intrusions Cooled by Convection, Int. J. Heat Mass Transfer 55 (2012).
DOI: 10.1016/j.ijheatmasstransfer.2011.10.057
Google Scholar
[26]
G.A. Ledezma, A. Bejan, M.R. Errera, Constructal tree networks for heat transfer, J. Appl. Phys. 82 (1) (1997) 89–100.
DOI: 10.1063/1.365853
Google Scholar
[27]
M. Almogbel, A. Bejan, Conduction trees with spacing at tips, Int. J. Heat Mass Transfer 42 (1999) 3739–3756.
DOI: 10.1016/s0017-9310(99)00051-4
Google Scholar
[28]
A. Alebrahim, A. Bejan, Constructal trees of circular fins for conductive and convective heat transfer, Int. J. Heat Mass Transfer 42 (1999) 3585–3597.
DOI: 10.1016/s0017-9310(99)00021-6
Google Scholar
[29]
M. Almogbel, A. Bejan, Cylindrical trees of pin fins, Int. J. Heat Mass Transfer 43 (2000) 4285–4297.
DOI: 10.1016/s0017-9310(00)00049-1
Google Scholar
[30]
L.A.O. Rocha, S. Lorente, A. Bejan, Constructal design for cooling a disc-shaped area by conduction, Int. J. Heat Mass Transfer 45 (2002) 1643–1652.
DOI: 10.1016/s0017-9310(01)00269-1
Google Scholar
[31]
L. Ghodoossi, N. Egrican, Conductive cooling of triangular shaped electronics using constructal theory, Energy Convers. Manage. 45 (2004) 811–828.
DOI: 10.1016/s0196-8904(03)00190-0
Google Scholar
[32]
A.K. Da Silva, C. Vasile, A. Bejan, Disc cooled with high-conductivity inserts that extend inward from the perimeter, Int. J. Heat Mass Transfer 47 (2004) 4257–4263.
DOI: 10.1016/j.ijheatmasstransfer.2004.04.024
Google Scholar
[33]
L.A.O. Rocha, S. Lorente, A. Bejan, Conduction tree networks with loops for cooling a heat generating volume, Int. J. Heat Mass Transfer 49 (2006) 2626–2635.
DOI: 10.1016/j.ijheatmasstransfer.2006.01.017
Google Scholar
[34]
L. Kuddusi, J.C. Denton, Analytical solution for heat conduction in composite slabs and its implementation in constructal solution for cooling of electronics, Energy Convers. Manage. 48 (2007) 1089–1105.
DOI: 10.1016/j.enconman.2006.10.024
Google Scholar
[35]
G. Lorenzini, C. Biserni, L. A. O. Rocha, Constructal design of X-shaped conductive pathways for cooling a heat-generating body, Int. J. Heat Mass Transf. 58 (2013) 513-520.
DOI: 10.1016/j.ijheatmasstransfer.2012.11.040
Google Scholar
[36]
G. Lorenzini, C. Biserni, L. A. O. Rocha, Constructal design of non-uniform X-shaped conductive pathways for cooling, Int. J. Thermal Sci. 71 (2013) 140-147.
DOI: 10.1016/j.ijthermalsci.2013.04.021
Google Scholar
[37]
MATLAB, User's Guide, Version 6. 0. 088, Release 12, The Mathworks Inc., (2000).
Google Scholar