Concentration Dependence of the Diffusion in the Ni/Cu System

Article Preview

Abstract:

Deviations from the Fickian-laws of diffusion in the case of concentration dependent diffusion coefficients and high composition gradients gain more and more acceptance nowadays. The cause of this phenomenon is the finite permeability of the atomic layers, or in other words “interface control”. The consequences are wide-spreading e.g. linear diffusion kinetics, deviations in the nucleation behavior of reaction products and kinetically determined interface shape in miscible alloys. Furthermore, if the original chemical interface is broader than the optimum width, even a sharpening of the interface by diffusion can be observed. Previous experiments proving these effects used more or less ideal specimens (e.g. single crystalline or amorphous samples with very flat interfaces) and some doubts can be raised whether these effects can be observed in a realistic specimen with a more complex grain structure. In this talk we will present the results of atom probe measurements on sputter deposited Ni/Cu multilayers (containing surface roughness, lattice defects, etc.). Samples with sharp and smeared Ni/Cu interfaces were produced and later annealed. We found an asymmetry on the interface width in the as-prepared specimens depending on the stacking order. After annealing this asymmetry vanished and remarkably the Cu/Ni interface sharpened by diffusion. After short diffusion time, the interface width became independent on the sample origin (sharp or smeared interface) proving the kinetic control of the interface. Atom probe tomography also allows the direct, local investigation of the grain boundary diffusion in any single grain boundaries. Surprisingly the best description of the shortcut transport can be achieved by assuming a concentration-independent grain boundary diffusion coefficient.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-182

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Cahn and J.E. Hilliard, J. Phys. Chem. Vol. 42 (1965), p.258.

Google Scholar

[2] H.E. Cook, D. de Fontaine and J.E. Hilliard, Acta Metall. Vol 17 (1969), p.765.

Google Scholar

[3] H.E. Cook and J.E. Hilliard, J. Appl. Phys. Vol. 40 (1969), p.2191.

Google Scholar

[4] Z. Erdélyi, D. Beke, P. Nemes and G. Langer, Philos. Mag. Vol. 79 (1999), p.1757.

Google Scholar

[5] Z. Erdélyi, M. Sladacek, L.M. Stadler, I. Zizak, G.A. Langer, M. Kis-Varga, D.L. Beke and D. Sepiol, Science Vol. 306 (2004), p.1913.

DOI: 10.1126/science.1104400

Google Scholar

[6] J.M. Roussel and P. Bellon, Phys. Rev. B Vol. 73 (2006), p.085403.

Google Scholar

[7] G.L. Katona, Z. Erdélyi, D.L. Beke, C. Friedrich, F. Weigl, H.G. Boyen, B. Koslowski and P. Ziemann, Phys. Rev. B Vol. 71 (2005), p.115432.

DOI: 10.1103/physrevb.71.115432

Google Scholar

[8] Z. Balogh, Z. Erdélyi, D.L. Beke, G.A. Langer, A. Csik, H.G. Boyen, U. Wiedwald, A. Portavoce and C. Girardeaux, Appl. Phys. Lett. Vol. 92 (2008), p.143104.

DOI: 10.1063/1.2908220

Google Scholar

[9] Z. Erdélyi, Z. Balogh and D.L. Beke, Acta Mater. Vol. 58 (2010), p.5639.

Google Scholar

[10] H. Wan, Y. Shen, X. Jin, Y. Chen and J. Sun, Acta Mater. Vol. 60 (2012), p.2539.

Google Scholar

[11] Z. Erdélyi and G. Schmitz, Acta Mater. Vol. 60 (2012), p.1807.

Google Scholar

[12] M.K. Miller, A. Cerezo, M.G. Hetherington and G.D.W. Smith: Atom probe field ion microscopy, (Clarendon Press, Oxford 1996).

Google Scholar

[13] P. Bas, A. Bostel, B. Deconihout and D. Blavette, Appl. Surf. Sci. Vol. 87-88 (1995), p.298.

Google Scholar

[14] P. Stender, C. Oberdorfer, M. Artmeier, P. Pelka, F. Spalleck and G. Schmitz, Ultramicroscopy Vol. 107 (2007), p.726.

DOI: 10.1016/j.ultramic.2007.02.032

Google Scholar

[15] P. Stender, C.B. Ene, H. Galinski and G. Schmitz, Int. J. Mat. Res. Vol. 99 (2008), p.480.

Google Scholar

[16] M. Gruber, F. Vurpillot, A. Bostel and B. Deconihout, Surf. Sci. Vol. 605 (2011), p.2025.

Google Scholar

[17] O. Moutanabbir, D. Isheim, D.N. Seidman, Y. Kawamura and K.M. Itoh, Appl. Phys. Lett. Vol. 98 (2011), p.013111.

Google Scholar

[18] D. Blavette, E. Cadel, A. Frackiewicz and A. Menand, Science Vol. 286 (1999), p.2317.

Google Scholar

[19] M.R. Chellali, Z. Balogh, H. Bouchikhaoui, R. Schlesiger, P. Stender, L. Zheng and G. Schmitz, Nano Lett. Vol. 12 (2012), p.3448.

DOI: 10.1021/nl300751q

Google Scholar

[20] R. Hu, G.D.W. Smith and E.A. Marquis, Acta Mater. Vol. 61 (2013), p.3490.

Google Scholar

[21] Z. Balogh, M.R. Chellai, G.H. Greiwe and G. Schmitz, Appl. Phys. Lett. Vol. 99 (2011), p.181902.

Google Scholar

[22] L.G. Harrison, Trans Faraday Soc Vol. 57 (1961), p.597.

Google Scholar

[23] G. Palumbo, S.J. Thorpe and K.J. Aust, Scripta Metall. Mater. Vol. 24 (1990), p.1347.

Google Scholar

[24] G. Gottstein, L.S. Shvindlerman and B. Zhao, Scripta Mater. Vol. 62 (2010), p.914.

Google Scholar

[25] B. Bokstein, V. Ivanov, O. Oreshine, A. Peteline and S. Peteline, Mat. Sci. Eng. A Vol. 302 (2001), p.151.

Google Scholar

[26] J.C. Fisher, J. Appl. Phys. Vol. 22 (1951), p.74.

Google Scholar