Self-Diffusion on Pd(111) from the Point of View of the Band Model of Diffusion

Article Preview

Abstract:

In this article we present a different view on the results of experimental investigation of the self - diffusion on Pd (111) published in „Surface Science“ [1]. Our consideration is based on the band model of diffusion. This model is able to explain the Meyer-Neldel rule (MNR) and to clarify “puzzles” mentioned in [1]. The aim of this article is also to familiarize the readers with this model, to the band model of diffusion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

292-297

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Steltenpohl, N. Memmel, Surface Science, 454–456 (2000) 558.

Google Scholar

[2] G.L. Kellogg, Surface Science Rep.  21 (1994) 1.

Google Scholar

[3] H. Brune, Surface Science Rep. 31 (1998) 121.

Google Scholar

[4] X.R. Wang, Xudong Xiao, Zhenyu Zhang, Surfac Science 512, (2002) L361.

Google Scholar

[5] R. Gomer, in: M.C. Tringides (Ed.), Surface Diffusion: Atomistic and Collective Processes, Plenum Press, New York, (1997) 510.

Google Scholar

[6] M. Kuntz M, E.E. Lavall, J. Phys.D: Appl.Phys. 37 (2004) L5.

Google Scholar

[7] J.C. Tully, Acc. Chem. Res., 14 (2011) 188.

Google Scholar

[8] G. Kyriakou, S.K. Beaumont, R.M. Lambert, Langmuir 2011, 27 (2011) 9687.

Google Scholar

[9] G. Ertl, H. Knozinger, J. Weitkamp, Handbook of heterogeneus catalysis, 1997 WCH Verlagsgeselschaft nbH Weinheim, Germany (1997). WCH a Wiley company (1997) ISBN 3-527-29212-8.

DOI: 10.1002/ange.19971092346

Google Scholar

[10] V.P. Zhdanov, Elementary Physicochemical Processes on Solid Surfaces, Plenum Press, New York, (1991).

Google Scholar

[11] E. Shustorovich, Metal-Surface Reaction Energetics: Theory and Applications to Heterogeneous Catalysis, Chemisorption, and Surface Diffusion. VCH Publishers, Inc.. (1991) ISBN 3-527-27938-5.

DOI: 10.1002/ange.19931050253

Google Scholar

[12] L.Y. Chen, S.C. Ying, Phys. Rev. B 60 (1999) 16965.

Google Scholar

[13] C. J. Chen:, Introduction to Scanning Tunnelling Microscopy, Oxford University Press, New York (1993) Ch. 13.

Google Scholar

[14] D.C. Senft, G. Ehrlich, Phys. Rev. Lett. 74 (1995) 294.

Google Scholar

[15] T.R. Linderoth, S. Horch, E. Laegsgaard, I. Steensgaard and F. Besenbacher. Phys. Rev. Lett. 78 No. 26 (1997) 4978.

Google Scholar

[16] G. Antezak, G. Ehrlich, Surface diffusion:metals, metal atoms, and clusters (Cambridge: Cambridge Univ. Press) (2010) ISBN: 0521899834, 784.

Google Scholar

[17] G. Antezak, G. Ehrlich, Suface Science Reports 62 (2007) 39.

Google Scholar

[18] M. Schunack, T.R. Linderoth, F. Rosei, E .Laegsgaard, I. Stensgaard, F. Besenbacher, Phys. Rev. Lett. Vol. 88 No. 15 (2002) 156102-4.

DOI: 10.1103/physrevlett.88.156102

Google Scholar

[19] D.C. Senft, G. Antezak, G. Ehrlich, Phys. Rev. B 73 (2006) 033406.

Google Scholar

[20] W. Meyer, H. Neldel, Z. Tech. Phys. (Leipzig), 18 (1937) 588.

Google Scholar

[21] A. Yelon, B. Movaghar, H.M. Branz, Phys. Rev. B 46 (1992) 12244.

Google Scholar

[22] G. Boisvert, L.J. Lewis, A. Yelon, Phys. Rev. Lett. 75 (1995) 469.

Google Scholar

[23] N. Mehta, Current Opinion in Solid State and Materials Science, 14 (2010) 95.

Google Scholar

[24] I. Banik, Chalcogenide Letters, 6, No. 12 (2009) 629.

Google Scholar

[25] I. Banik, Journal of Non-Oxide Glasses, 1 No. 4 (2009) 267.

Google Scholar