Comparison of Electrochemical and Chemical Corrosion Behavior of MRI 230D Magnesium Alloy with and without Plasma Electrolytic Oxidation Treatment

Article Preview

Abstract:

Magnesium is one of the lightest metals and magnesium alloys have quite special properties, interest to which is continuously growing. In particular, their high strength-to-weight ratio makes magnesium alloys attractive for various applications, such as transportation, aerospace industry etc. However, magnesium alloys are still not as popular as aluminum alloys, and a major issue is their corrosion behavior.The present research investigated the influence of the PEO treatment on the corrosion behavior of MRI 230M magnesium alloy. Plasma electrolytic oxidation (PEO) of an MRI 230M alloy was accomplished in a silicate-base electrolyte with KF addition using an AC power source.The corrosion behavior of both treated and untreated samples was evaluated by open circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS), linear polarization tests, linear sweep voltammetry (Tafel extrapolation) and chemical methods, such as mass loss and hydrogen evolution, in neutral 3.0 wt% NaCl solution.According to the tests results, PEO process can affect the corrosion resistance of MRI 230M magnesium alloy, though its action is not always unambiguous. An attempt to explain the influence of the PEO treatment on the corrosion behavior of the alloy is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-34

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.L. Mordike, T. Ebert, Magnesium: Properties, applications, potential, Mater. Sci. Eng., A302, 37–45, (2001).

Google Scholar

[2] B. A. Shaw, Corrosion Resistanceof Magnesium Alloys, ASM Handbook, 13A, 692-695, (2003).

Google Scholar

[3] A. L. Rudd, C. B. Breslin, F. Mansfeld, The corrosion protection afforded by rareearth conversion coatings applied tomagnesium, Corros. Sci., 42, 275-288, (2000).

DOI: 10.1016/s0010-938x(99)00076-1

Google Scholar

[4] S. Shadanbaz, G. J. Dias, Calcium phosphate coatings on magnesium alloys for biomedical applications: A review, Acta Biomaterialia, 8, 20–30, (2012).

DOI: 10.1016/j.actbio.2011.10.016

Google Scholar

[5] C.E. Barchiche, E. Rocca, C. Juers, J. Hazan, J. Steinmetz, Corrosion resistance of plasma-anodized AZ91D magnesiumalloy by electrochemical methods, Electrochim. Acta, 53, 417–425, (2007).

DOI: 10.1016/j.electacta.2007.04.030

Google Scholar

[6] R.G. Hu, S. Zhang, J.F. Bu, Ch.J. Lin, G.L. Song, Recent progress in corrosion protection of magnesium alloys by organic coatings, Prog. Org. Coat., 73, 129– 141, (2012).

DOI: 10.1016/j.porgcoat.2011.10.011

Google Scholar

[7] K. Murakami, M. Hino, K. Nakai, S. Kobayashi,A. Saijo, T. Kanadani, Mechanism of Corrosion Protection of Anodized Magnesium Alloys, Mater. Transact., 49 (5), 1057–1064, (2008).

DOI: 10.2320/matertrans.mc200718

Google Scholar

[8] B. Kazanski, A. Kossenko, M. Zinigrad, A. Lugovskoy, Fluoride ions as modifiers of the oxide layer produced by plasma electrolytic oxidation on AZ91D magnesium alloy, App. Surf. Sci., 287, 461– 466, (2013).

DOI: 10.1016/j.apsusc.2013.09.180

Google Scholar

[9] J. Li, Y. Tian, Z. Cui, Z. Huang, Effects of rare earths on the microarc oxidation of a magnesium alloy, Rare Metals, 27 (I), 50– 54, (2008).

DOI: 10.1016/s1001-0521(08)60029-7

Google Scholar

[10] H. Duan, C. Yan, F. Wang, Effect of electrolyte additives on performance of plasma electrolyticoxidation films formed on magnesium alloy AZ91D, Electrochim. Acta, 52, 3785–3793, (2007).

DOI: 10.1016/j.electacta.2006.10.066

Google Scholar

[11] R.F. Zhang, D.Y. Shan, R.S. Chen, E.H. Han, Effects of electric parameters on properties of anodic coatings formed on magnesium alloys, Mater. Chem. and Phys., 107, 356–363, (2008).

DOI: 10.1016/j.matchemphys.2007.07.027

Google Scholar

[12] C. Blawert, V. Heitmann, W. Dietzel, H.M. Nykyforchyn, M.D. Klapkiv, Influence of process parameters on the corrosion properties of electrolyticconversion plasma coated magnesium alloys, Surf. Coat. Tech., 200, 68– 72, (2005).

DOI: 10.1016/j.surfcoat.2005.02.035

Google Scholar

[13] E. Cakmak, K. C. Tekin, U. Malayoglu, S. Shrestha, The effect of substrate composition on the electrochemical and mechanicalproperties of PEO coatings on Mg alloys, Surf. Coat. Tech., 204, 1305–1313, (2010).

DOI: 10.1016/j.surfcoat.2009.10.012

Google Scholar

[14] R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, G.E. Thompson, Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings, Corros. Sci., 50, 1744–1752, (2008).

DOI: 10.1016/j.corsci.2008.03.002

Google Scholar

[15] X. Zeng, Y. Wang, W. Ding, A. A. Luo,A. K. Sachdev, Effect of Strontium on the Microstructure, MechanicalProperties, and Fracture Behavior of AZ31 Magnesium Alloy, Metal. Mater. Trans., 37A, 1333–1341, (2006).

DOI: 10.1007/s11661-006-1085-8

Google Scholar

[16] Z. Shi, M. Liu, A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation, Corros. Sci., 52, 579–588, (2010).

DOI: 10.1016/j.corsci.2009.10.016

Google Scholar

[17] F. Cao, Z. Shi, J. Hofstetter, P. J. Uggowitzer, G. Song, M. Liu, A. Atrens, Corrosion of ultra-high-purity Mg in 3. 5% NaCl solution saturated with Mg(OH)2, Corros. Sci., 75, 78–99, (2013).

DOI: 10.1016/j.corsci.2013.05.018

Google Scholar

[18] E. Aghion, B. Bronfin, F. von Buch, S. Schumann, H. Friedrich, The art of developing new magnesium alloys for high temperature applications, Mater. Sci. Forum, 419, 407-418, (2003).

DOI: 10.4028/www.scientific.net/msf.419-422.407

Google Scholar